A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation

被引:1
|
作者
R. F. Oulton
V. J. Sorger
D. A. Genov
D. F. P. Pile
X. Zhang
机构
[1] NSF Nanoscale Science and Engineering Center,
[2] 3112 Etcheverry Hall,undefined
[3] University of California,undefined
来源
Nature Photonics | 2008年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons2,3 are among the most promising candidates for subwavelength optical confinement3,4,5,6,7,8,9,10. However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands3,11,12,13. Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables ‘capacitor-like’ energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40–150 µm) with strong mode confinement (ranging from λ2/400 to λ2/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics.
引用
收藏
页码:496 / 500
页数:4
相关论文
共 50 条
  • [21] A long-range hybrid THz plasmonic waveguide with low attenuation loss
    Eldlio, M.
    Ma, Y. Q.
    Maeda, H.
    Cada, M.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2017, 80 : 93 - 99
  • [22] Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement
    Ma, Youqiao
    Farrell, Gerald
    Semenova, Yuliya
    Wu, Qiang
    [J]. OPTICS LETTERS, 2014, 39 (04) : 973 - 976
  • [23] Graphene-Based Hybrid Plasmonic Waveguide with Deep Subwavelength Confinement
    He Xueqing
    Zhai Yuanbo
    Li Pengfei
    [J]. ACTA OPTICA SINICA, 2023, 43 (10)
  • [24] Hybrid Tube-Triangle Plasmonic Waveguide for Ultradeep Subwavelength Confinement
    Dong, Lu
    Liu, Hongxia
    Wang, Shulong
    Qu, Sheng
    Wu, Lei
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (11) : 2259 - 2265
  • [25] Long-Range Energy Transport via Plasmonic Propagation in a Supramolecular Organic Waveguide
    Armao, Joseph J.
    Rabu, Pierre
    Moulin, Emilie
    Giuseppone, Nicolas
    [J]. NANO LETTERS, 2016, 16 (04) : 2800 - 2805
  • [26] Hybrid long-range hyperbolic phonon polariton waveguide using hexagonal boron nitride for mid-infrared subwavelength confinement
    Yang, Yuchen
    Finch, Michael F.
    Xiong, Di
    Lail, Brian A.
    [J]. OPTICS EXPRESS, 2018, 26 (20): : 26272 - 26282
  • [27] Hybrid spherical cap plasmonic waveguide for tight mode confinement and long propagation length
    Li, Kai
    Yun, Maojin
    Ge, Xiaohui
    Kong, Weijin
    [J]. PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XIII, 2015, 9547
  • [28] Mode confinement enhanced in hybrid Bloch surface wave long-range waveguide
    Kong, Weijing
    Liu, Qinyu
    Yin, Rongguo
    Ni, Xiaochang
    [J]. OPTICAL ENGINEERING, 2023, 62 (01)
  • [29] Coupling Characteristic of a Novel Hybrid Long-Range Plasmonic Waveguide Including Bends
    Heikal, Ahmed M.
    Hameed, Mohamed Farhat O.
    Obayya, Salah S. A.
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2013, 49 (08) : 621 - 627
  • [30] Hybrid Nanowire-Rectangular Plasmonic Waveguide for Subwavelength Confinement at 1550 Nm
    Wang, Yindi
    Liu, Hongxia
    Wang, Shulong
    Cai, Ming
    [J]. MICROMACHINES, 2022, 13 (07)