On braided fusion categories I

被引:0
|
作者
Vladimir Drinfeld
Shlomo Gelaki
Dmitri Nikshych
Victor Ostrik
机构
[1] University of Chicago,Department of Mathematics
[2] Technion-Israel Institute of Technology,Department of Mathematics
[3] University of New Hampshire,Department of Mathematics and Statistics
[4] University of Oregon,Department of Mathematics
来源
Selecta Mathematica | 2010年 / 16卷
关键词
Tensor category; Braided tensor category; Equivariantization; 18D10; 16W30;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new notion of the core of a braided fusion category. It allows to separate the part of a braided fusion category that does not come from finite groups. We also give a comprehensive and self-contained exposition of the known results on braided fusion categories without assuming them pre-modular or non-degenerate. The guiding heuristic principle of our work is an analogy between braided fusion categories and Casimir Lie algebras.
引用
收藏
页码:1 / 119
页数:118
相关论文
共 50 条
  • [41] An Alternative Description of Braided Monoidal Categories
    Davydov, Alexei
    Runkel, Ingo
    [J]. APPLIED CATEGORICAL STRUCTURES, 2015, 23 (03) : 279 - 309
  • [42] Double bicrossproducts in braided tensor categories
    Zhang, SC
    Chen, HX
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (01) : 31 - 66
  • [43] MORE EXAMPLES OF PSEUDOSYMMETRIC BRAIDED CATEGORIES
    Panaite, Florin
    Staic, Mihai D.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (04)
  • [44] Multiplier bialgebras in braided monoidal categories
    Boehm, Gabriella
    Lack, Stephen
    [J]. JOURNAL OF ALGEBRA, 2015, 423 : 853 - 889
  • [45] On symbolic computations in braided monoidal categories
    Pareigis, B
    [J]. HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 269 - 279
  • [46] A new approach to braided monoidal categories
    Zhang, Tao
    Wang, Shuanhong
    Wang, Dingguo
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
  • [47] Planar Algebras in Braided Tensor Categories
    Henriques, Andre Gil
    Penneys, David
    Tener, James
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 282 (1392) : I - +
  • [48] Symmetric centres of braided monoidal categories
    蔡传仁
    江宝歆
    [J]. Science China Mathematics, 2000, (04) : 384 - 390
  • [49] Symmetric centres of braided monoidal categories
    Chuanren Cai
    Baoxin Jiang
    [J]. Science in China Series A: Mathematics, 2000, 43 : 384 - 390
  • [50] An Alternative Description of Braided Monoidal Categories
    Alexei Davydov
    Ingo Runkel
    [J]. Applied Categorical Structures, 2015, 23 : 279 - 309