Symmetric centres of braided monoidal categories

被引:0
|
作者
Chuanren Cai
Baoxin Jiang
机构
[1] Yangzhou University,Department of Mathematics
来源
关键词
Yetter-Drinfel’d module; braided monoidal category; symmetric centre;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces the concept of ‘symmetric centres’ of braided monoidal categories. LetH be a Hopf algebra with bijective antipode over a fieldk. We address the symmetric centre of the Yetter-Drinfel’d module category:[graphic not available: see fulltext] and show that a left Yetter-Drinfel’d moduleM belongs to the symmetric centre of[graphic not available: see fulltext] and only ifM is trivial. We also study the symmetric centres of categories of representations of quasitriangular Hopf algebras and give a sufficient and necessary condition for the braid of,Hℳ to induce the braid of[graphic not available: see fulltext], or equivalently, the braid of[graphic not available: see fulltext], whereA is a quantum commutativeH-module algebra
引用
收藏
页码:384 / 390
页数:6
相关论文
共 50 条
  • [1] Symmetric centres of braided monoidal categories
    蔡传仁
    江宝歆
    [J]. Science China Mathematics, 2000, (04) : 384 - 390
  • [2] Symmetric centres of braided monoidal categories
    Cai, CR
    Jiang, BX
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (04): : 384 - 390
  • [3] Monoidal Categories Enriched in Braided Monoidal Categories
    Morrison, Scott
    Penneys, David
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (11) : 3527 - 3579
  • [4] Braided and coboundary monoidal categories
    Savage, Alistair
    [J]. ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 229 - 251
  • [5] BRAIDED SKEW MONOIDAL CATEGORIES
    Bourke, John
    Lack, Stephen
    [J]. THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 19 - 63
  • [6] Presentably symmetric monoidal ∞-categories are represented by symmetric monoidal model categories
    Nikolaus, Thomas
    Sagave, Steffen
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (05): : 3189 - 3212
  • [7] Centres of monoidal categories of functors
    Day, Brian
    Street, Ross
    [J]. CATEGORIES IN ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS, 2007, 431 : 187 - +
  • [8] Multiplier bialgebras in braided monoidal categories
    Boehm, Gabriella
    Lack, Stephen
    [J]. JOURNAL OF ALGEBRA, 2015, 423 : 853 - 889
  • [9] On symbolic computations in braided monoidal categories
    Pareigis, B
    [J]. HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 269 - 279
  • [10] A new approach to braided monoidal categories
    Zhang, Tao
    Wang, Shuanhong
    Wang, Dingguo
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)