Symmetric centres of braided monoidal categories

被引:0
|
作者
Chuanren Cai
Baoxin Jiang
机构
[1] Yangzhou University,Department of Mathematics
来源
关键词
Yetter-Drinfel’d module; braided monoidal category; symmetric centre;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces the concept of ‘symmetric centres’ of braided monoidal categories. LetH be a Hopf algebra with bijective antipode over a fieldk. We address the symmetric centre of the Yetter-Drinfel’d module category:[graphic not available: see fulltext] and show that a left Yetter-Drinfel’d moduleM belongs to the symmetric centre of[graphic not available: see fulltext] and only ifM is trivial. We also study the symmetric centres of categories of representations of quasitriangular Hopf algebras and give a sufficient and necessary condition for the braid of,Hℳ to induce the braid of[graphic not available: see fulltext], or equivalently, the braid of[graphic not available: see fulltext], whereA is a quantum commutativeH-module algebra
引用
收藏
页码:384 / 390
页数:6
相关论文
共 50 条
  • [21] Topological Hopf algebras and braided monoidal categories
    Larson, RG
    APPLIED CATEGORICAL STRUCTURES, 1998, 6 (02) : 139 - 150
  • [22] Unitary braided-enriched monoidal categories
    Dell, Zachary
    Huston, Peter
    Penneys, David
    QUANTUM TOPOLOGY, 2024, 15 (3-4) : 567 - 632
  • [23] TWISTED SMASH COPRODUCTS IN BRAIDED MONOIDAL CATEGORIES
    Zhao, Wenzheng
    Gao, Shengjie
    Ma, Tianshui
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2010, 7 : 12 - 33
  • [24] Cocycle deformations, braided monoidal categories and quasitriangularity
    Chen, HX
    CHINESE SCIENCE BULLETIN, 1999, 44 (06): : 510 - 513
  • [25] HOPF CYCLIC COHOMOLOGY IN BRAIDED MONOIDAL CATEGORIES
    Khalkhali, Masoud
    Pourkia, Arash
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2010, 12 (01) : 111 - 155
  • [26] ∞-OPERADS AS SYMMETRIC MONOIDAL ∞-CATEGORIES
    Haugseng, Rune
    Kock, Joachim
    PUBLICACIONS MATEMATIQUES, 2024, 68 (01) : 111 - 137
  • [27] Braided monoidal categories associated to Yetter-Drinfeld categories
    Wang, SH
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) : 5111 - 5124
  • [28] SYMMETRIC MONOIDAL CATEGORIES AND F-CATEGORIES
    Sharma, Amit
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 417 - 512
  • [29] Topological Hopf Algebras and Braided Monoidal Categories
    R. G. Larson
    Applied Categorical Structures, 1998, 6 : 139 - 150
  • [30] Weak Hopf monoids in braided monoidal categories
    Pastro, Craig
    Street, Ross
    ALGEBRA & NUMBER THEORY, 2009, 3 (02) : 149 - 207