On searching for an optimal threshold for morphological image segmentation

被引:0
|
作者
Francisco A. Pujol
Mar Pujol
Ramón Rizo
Maria José Pujol
机构
[1] Escuela Politécnica Superior,Departamento de Tecnología Informática y Computación
[2] Universidad de Alicante,Departamento de Ciencia de la Computación e Inteligencia Artificial
[3] Escuela Politécnica Superior,Departamento de Matemática Aplicada
[4] Universidad de Alicante,undefined
[5] Escuela Politécnica Superior,undefined
[6] Universidad de Alicante,undefined
来源
关键词
Mathematical Morphology; Image segmentation; Edge detection; Distance metrics;
D O I
暂无
中图分类号
学科分类号
摘要
Segmentation of images represents the first step in many of the tasks that pattern recognition or computer vision has to deal with. Therefore, the main goal of our paper is to describe a new method for image segmentation, taking into account some Mathematical Morphology operations and an adaptively updated threshold, what we call Morphological Gradient Threshold, to obtain the optimal segmentation. The key factor in our work is the calculation of the distance between the segmented image and the ideal segmentation. Experimental results show that the optimal threshold is obtained when the Morphological Gradient Threshold is around the 70% of the maximum value of the gradient. This threshold could be computed, for any new image captured by the vision system, using a properly designed binary metrics.
引用
收藏
页码:235 / 250
页数:15
相关论文
共 50 条
  • [41] Morphological operation detection of retinal image segmentation
    Kumar, S. Jerald Jeba
    Ravichandran, C.G.
    [J]. Proceedings of the International Conference on Intelligent Sustainable Systems, ICISS 2017, 2018, : 1228 - 1235
  • [42] Biomedical Image Segmentation Based on Morphological Spectra
    Kulikowski, J. L.
    Przytulska, M.
    [J]. 4TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2009, 22 (1-3): : 406 - 409
  • [43] Noise image segmentation based on morphological granulometry
    Wang, XP
    Hao, CY
    Wang, Y
    [J]. ICEMI'2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1-3, 2003, : 301 - 304
  • [44] New Morphological Technique for Medical Image Segmentation
    Priya
    Verma, Vivek Singh
    [J]. 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2017,
  • [45] HIERARCHICAL MORPHOLOGICAL SEGMENTATION FOR IMAGE SEQUENCE CODING
    SALEMBIER, P
    PARDAS, M
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1994, 3 (05) : 639 - 651
  • [46] Color profile function for morphological image segmentation
    d'Ornellas, MC
    da Costa, JATB
    Dias, AP
    [J]. COLOR IMAGING X: PROCESSING, HARDCOPY, AND APPLICATIONS, 2005, : 275 - 288
  • [47] MORPHOLOGICAL MULTISCALE SEGMENTATION FOR IMAGE-CODING
    SALEMBIER, P
    [J]. SIGNAL PROCESSING, 1994, 38 (03) : 359 - 386
  • [48] Image segmentation based on the derivative of the morphological profile
    Pesaresi, M
    Benediktsson, JA
    [J]. MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, 2000, 18 : 179 - 188
  • [49] SAR Image Segmentation Using Morphological Thresholding
    Poodanchi, Mehdi
    Akbarizadeh, Gholamreza
    Sobhanifar, Elham
    Ansari-Asl, Karim
    [J]. 2014 6TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2014, : 33 - 36
  • [50] Adaptive Morphological Reconstruction for Seeded Image Segmentation
    Lei, Tao
    Jia, Xiaohong
    Liu, Tongliang
    Liu, Shigang
    Meng, Hongying
    Nandi, Asoke K.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5510 - 5523