On searching for an optimal threshold for morphological image segmentation

被引:0
|
作者
Francisco A. Pujol
Mar Pujol
Ramón Rizo
Maria José Pujol
机构
[1] Escuela Politécnica Superior,Departamento de Tecnología Informática y Computación
[2] Universidad de Alicante,Departamento de Ciencia de la Computación e Inteligencia Artificial
[3] Escuela Politécnica Superior,Departamento de Matemática Aplicada
[4] Universidad de Alicante,undefined
[5] Escuela Politécnica Superior,undefined
[6] Universidad de Alicante,undefined
来源
关键词
Mathematical Morphology; Image segmentation; Edge detection; Distance metrics;
D O I
暂无
中图分类号
学科分类号
摘要
Segmentation of images represents the first step in many of the tasks that pattern recognition or computer vision has to deal with. Therefore, the main goal of our paper is to describe a new method for image segmentation, taking into account some Mathematical Morphology operations and an adaptively updated threshold, what we call Morphological Gradient Threshold, to obtain the optimal segmentation. The key factor in our work is the calculation of the distance between the segmented image and the ideal segmentation. Experimental results show that the optimal threshold is obtained when the Morphological Gradient Threshold is around the 70% of the maximum value of the gradient. This threshold could be computed, for any new image captured by the vision system, using a properly designed binary metrics.
引用
收藏
页码:235 / 250
页数:15
相关论文
共 50 条
  • [31] Fast Image Segmentation Method based on Threshold
    Tang Xu-dong
    Pang Yong-jie
    Zhang He
    Zhu Wei
    [J]. 2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 3281 - 3285
  • [32] Design of Threshold Segmentation Method for Quantum Image
    Panchi Li
    Tong Shi
    Ya Zhao
    Aiping Lu
    [J]. International Journal of Theoretical Physics, 2020, 59 : 514 - 538
  • [33] Design of Threshold Segmentation Method for Quantum Image
    Li, Panchi
    Shi, Tong
    Zhao, Ya
    Lu, Aiping
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (02) : 514 - 538
  • [34] Research on CCD Infrared Image Threshold Segmentation
    Ma Xing
    Han Junli
    Liu Changshun
    [J]. ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 1292 - 1297
  • [35] Optimal Parameter Algorithm for Image Segmentation
    Tian, WenJie
    Geng, Yu
    Liu, JiCheng
    Ai, Lan
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING, FITME 2009, 2009, : 179 - 182
  • [36] Optimal Fractional Filter for image segmentation
    Nakib, A.
    Schulze, Y.
    Petit, E.
    [J]. IMAGE PROCESSING: ALGORITHMS AND SYSTEMS X AND PARALLEL PROCESSING FOR IMAGING APPLICATIONS II, 2012, 8295
  • [37] Optimal partitioning methods for image segmentation
    Fadnavis, Shreyas
    [J]. JOURNAL OF ENGINEERING-JOE, 2015, : 1 - 4
  • [38] AN OPTIMAL SET OF IMAGE SEGMENTATION RULES
    LEVINE, MD
    NAZIF, AM
    [J]. PATTERN RECOGNITION LETTERS, 1984, 2 (04) : 243 - 248
  • [39] Selection of an automated morphological gradient threshold for image segmentation. Application to vision-based path planning
    Pujol, FA
    Suau, P
    Pujol, M
    Rizo, R
    Pujol, MJ
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2004, 2004, 3315 : 667 - 676
  • [40] Semantic image segmentation using morphological tools
    Pardo, A
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 745 - 748