On searching for an optimal threshold for morphological image segmentation

被引:0
|
作者
Francisco A. Pujol
Mar Pujol
Ramón Rizo
Maria José Pujol
机构
[1] Escuela Politécnica Superior,Departamento de Tecnología Informática y Computación
[2] Universidad de Alicante,Departamento de Ciencia de la Computación e Inteligencia Artificial
[3] Escuela Politécnica Superior,Departamento de Matemática Aplicada
[4] Universidad de Alicante,undefined
[5] Escuela Politécnica Superior,undefined
[6] Universidad de Alicante,undefined
来源
关键词
Mathematical Morphology; Image segmentation; Edge detection; Distance metrics;
D O I
暂无
中图分类号
学科分类号
摘要
Segmentation of images represents the first step in many of the tasks that pattern recognition or computer vision has to deal with. Therefore, the main goal of our paper is to describe a new method for image segmentation, taking into account some Mathematical Morphology operations and an adaptively updated threshold, what we call Morphological Gradient Threshold, to obtain the optimal segmentation. The key factor in our work is the calculation of the distance between the segmented image and the ideal segmentation. Experimental results show that the optimal threshold is obtained when the Morphological Gradient Threshold is around the 70% of the maximum value of the gradient. This threshold could be computed, for any new image captured by the vision system, using a properly designed binary metrics.
引用
收藏
页码:235 / 250
页数:15
相关论文
共 50 条
  • [1] On searching for an optimal threshold for morphological image segmentation
    Pujol, Francisco A.
    Pujol, Mar
    Rizo, Ramon
    Jose Pujol, Maria
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2011, 14 (03) : 235 - 250
  • [2] AN OPTIMAL MULTIPLE THRESHOLD SCHEME FOR IMAGE SEGMENTATION
    REDDI, SS
    RUDIN, SF
    KESHAVAN, HR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1984, 14 (04): : 661 - 665
  • [3] Selection of an automated morphological gradient threshold for image segmentation
    López, RAP
    Chamizo, JMC
    López, MP
    Aldeguer, RR
    Pujol, MJ
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, 2004, 3287 : 92 - 99
  • [4] AN OPTIMAL MULTIPLE THRESHOLD SCHEME FOR IMAGE SEGMENTATION - COMMENT
    LEE, H
    PARK, RH
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1990, 20 (03): : 741 - 742
  • [5] A fast numerical method for finding the optimal threshold for image segmentation
    Rhee, FCH
    Shin, YS
    [J]. PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 984 - 989
  • [6] Optimal threshold selection for tomogram segmentation by reprojection of the reconstructed image
    Batenburg, K. Joost
    Sijbers, Jan
    [J]. COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2007, 4673 : 563 - 570
  • [7] A fast automatic optimal threshold selection technique for image segmentation
    Singla, Anshu
    Patra, Swarnajyoti
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 243 - 250
  • [8] A fast automatic optimal threshold selection technique for image segmentation
    Anshu Singla
    Swarnajyoti Patra
    [J]. Signal, Image and Video Processing, 2017, 11 : 243 - 250
  • [9] An Image Segmentation Approach Based on Graph Theory and Optimal Threshold Model
    Guo, Xiangyun
    Zhang, Xiuhua
    Hong, Hanyu
    [J]. 2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [10] An Image Segmentation Algorithm in Image Processing Based on Threshold Segmentation
    Zhu, Shiping
    Xia, Xi
    Zhang, Qingrong
    Belloulata, Kamel
    [J]. SITIS 2007: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGIES & INTERNET BASED SYSTEMS, 2008, : 673 - +