Decreasing behavior of the depth functions of edge ideals

被引:0
|
作者
Ha Thi Thu Hien
Ha Minh Lam
Ngo Viet Trung
机构
[1] Foreign Trade University,Institute of Mathematics
[2] Vietnam Academy of Science and Technology,undefined
来源
关键词
Graph; Ear decomposition; Dominating set; Independent set; Degree complex; Edge ideal; Ideal power; Symbolic power; Depth; 13C15; 13C70; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
Let I be the edge ideal of a connected non-bipartite graph and R the base polynomial ring. Then, depthR/I≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I \ge 1$$\end{document} and depthR/It=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I^t = 0$$\end{document} for t≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \gg 1$$\end{document}. This paper studies the problem when depthR/It=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I^t = 1$$\end{document} for some t≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document} and whether the depth function is non-increasing thereafter. Furthermore, we are able to give a simple combinatorial criterion for depthR/I(t)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I^{(t)} = 1$$\end{document} for t≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \gg 1$$\end{document} and show that the condition depthR/I(t)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {depth}}R/I^{(t)} = 1$$\end{document} is persistent, where I(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^{(t)}$$\end{document} denotes the t-th symbolic powers of I.
引用
下载
收藏
页码:37 / 53
页数:16
相关论文
共 50 条