A GENERAL FORMULA FOR THE INDEX OF DEPTH STABILITY OF EDGE IDEALS

被引:0
|
作者
Lam, Ha Minh [1 ]
Trung, Ngo Viet [1 ]
Trung, Tran Nam [1 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi 10307, Vietnam
关键词
Edge ideal; bipartite graph; powers of ideal; depth function; index of depth stability; degree complex; diophantine system of linear inequalities; graph parallelization; matching-covered graph; ear decomposition; EAR-DECOMPOSITIONS; COHEN-MACAULAYNESS; STABLE SET; POWERS; PRIMES;
D O I
10.1090/tran/9212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a classical result of Brodmann, the function depthR/I-t is asymptotically a constant, i.e. there is a number s such that depthR/I-t=depth R/I-s for t>s. One calls the smallest number s with this property the index of depth stability of I and denotes it by dstab(I). This invariant remains mysterious til now. The main result of this paper gives an explicit formula for dstab(I) when I is an arbitrary ideal generated by squarefree monomials of degree 2. That is the first general case where one can characterize dstab(I) explicitly. The formula expresses dstab(I) in terms of the associated graph. The proof involves new techniques which relate different topics such as simplicial complexes, systems of linear inequalities, graph parallelizations, and ear decompositions. It provides an effective method for the study of powers of edge ideals.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] On the Index of Depth Stability of Symbolic Powers of Cover Ideals of Graphs
    Fakhari, S. A. Seyed
    Yassemi, S.
    ACTA MATHEMATICA VIETNAMICA, 2024, : 367 - 376
  • [2] STANLEY DEPTH OF EDGE IDEALS
    Ishaq, Muhammad
    Qureshi, Muhammad Imran
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (04) : 501 - 508
  • [3] On the index of powers of edge ideals
    Bigdeli, Mina
    Herzog, Juergen
    Zaare-Nahandi, Rashid
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 1080 - 1095
  • [4] On the depth of binomial edge ideals of graphs
    Malayeri, M. Rouzbahani
    Madani, S. Saeedi
    Kiani, D.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 827 - 846
  • [5] On the depth of binomial edge ideals of graphs
    M. Rouzbahani Malayeri
    S. Saeedi Madani
    D. Kiani
    Journal of Algebraic Combinatorics, 2022, 55 : 827 - 846
  • [6] On the Stanley depth of powers of edge ideals
    Fakhari, S. A. Seyed
    JOURNAL OF ALGEBRA, 2017, 489 : 463 - 474
  • [7] On the Depth of Generalized Binomial Edge Ideals
    Anuvinda, J.
    Mehta, Ranjana
    Saha, Kamalesh
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (05)
  • [8] Binomial edge ideals of small depth
    Malayeri, Mohammad Rouzbahani
    Madani, Sara Saeedi
    Kiani, Dariush
    JOURNAL OF ALGEBRA, 2021, 572 : 231 - 244
  • [9] Depth and Stanley depth of the edge ideals of the powers of paths and cycles
    Iqbal, Zahid
    Ishaq, Muhammad
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (03): : 113 - 135
  • [10] DEPTH OF INITIAL IDEALS OF NORMAL EDGE RINGS
    Hibi, Takayuki
    Higashitani, Akihiro
    Kimura, Kyouko
    O'keefe, Augustine B.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (07) : 2908 - 2922