A GENERAL FORMULA FOR THE INDEX OF DEPTH STABILITY OF EDGE IDEALS

被引:0
|
作者
Lam, Ha Minh [1 ]
Trung, Ngo Viet [1 ]
Trung, Tran Nam [1 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi 10307, Vietnam
关键词
Edge ideal; bipartite graph; powers of ideal; depth function; index of depth stability; degree complex; diophantine system of linear inequalities; graph parallelization; matching-covered graph; ear decomposition; EAR-DECOMPOSITIONS; COHEN-MACAULAYNESS; STABLE SET; POWERS; PRIMES;
D O I
10.1090/tran/9212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a classical result of Brodmann, the function depthR/I-t is asymptotically a constant, i.e. there is a number s such that depthR/I-t=depth R/I-s for t>s. One calls the smallest number s with this property the index of depth stability of I and denotes it by dstab(I). This invariant remains mysterious til now. The main result of this paper gives an explicit formula for dstab(I) when I is an arbitrary ideal generated by squarefree monomials of degree 2. That is the first general case where one can characterize dstab(I) explicitly. The formula expresses dstab(I) in terms of the associated graph. The proof involves new techniques which relate different topics such as simplicial complexes, systems of linear inequalities, graph parallelizations, and ear decompositions. It provides an effective method for the study of powers of edge ideals.
引用
收藏
页码:8633 / 8657
页数:25
相关论文
共 50 条
  • [22] Depth and extremal Betti number of binomial edge ideals
    Kumar, Arvind
    Sarkar, Rajib
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (09) : 1746 - 1761
  • [23] Lower bounds for the depth of the second power of edge ideals
    Fakhari, S. A. Seyed
    COLLECTANEA MATHEMATICA, 2024, 75 (02) : 535 - 544
  • [24] DEPTH AND STANLEY DEPTH OF POWERS OF THE EDGE IDEALS OF SOME CATERPILLAR AND LOBSTER TREES
    Zahid, Tooba
    Sajid, Zunaira
    Ishaq, Muhammad
    MATHEMATICAL REPORTS, 2023, 25 (02): : 199 - 220
  • [25] STABILITY OF DEPTH AND STANLEY DEPTH OF SYMBOLIC POWERS OF SQUAREFREE MONOMIAL IDEALS
    Fakhari, S. A. Seyed
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 1849 - 1862
  • [26] A new general formula for calculating penetration depth
    Wang, Anbao
    Deng, Guoqiang
    Yang, Xiumin
    Ren, Wangjun
    Zhou, Bukui
    Zhang, Lei
    Zhang, Xiangbai
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2021, 54 (10): : 36 - 46
  • [27] BOUNDS ON THE STANLEY DEPTH AND STANLEY REGULARITY OF EDGE IDEALS OF CLUTTERS
    Shen, Yi-Huang
    JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (03) : 423 - 445
  • [28] Depth of powers of edge ideals of Cohen-Macaulay trees
    Hang, Nguyen Thu
    Hien, Truong Thi
    Vu, Thanh
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (12) : 5049 - 5060
  • [29] Depth of powers of binomial edge ideals of complete bipartite graphs
    Wang, Hong
    Tang, Zhongming
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (06) : 2472 - 2483
  • [30] DEPTH OF BINOMIAL EDGE IDEALS IN TERMS OF DIAMETER AND VERTEX CONNECTIVITY
    Jayanthan, A., V
    Sarkar, Rajib
    JOURNAL OF COMMUTATIVE ALGEBRA, 2024, 16 (04) : 411 - 437