DEPTH OF INITIAL IDEALS OF NORMAL EDGE RINGS

被引:3
|
作者
Hibi, Takayuki [1 ]
Higashitani, Akihiro [1 ]
Kimura, Kyouko [2 ]
O'keefe, Augustine B. [3 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Toyonaka, Osaka 560, Japan
[2] Shizuoka Univ, Grad Sch Sci, Dept Math, Suruga Ku, Shizuoka 4228529, Japan
[3] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
Edge ring; Grobner basis; Initial ideal; Shellable complex; Toric ideal; 13P10; FINITE GRAPHS;
D O I
10.1080/00927872.2012.760565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite graph on the vertex set [d]={1,..., d} with the edges e(1),..., e(n) and K[t]=K[t(1),..., t(d)] the polynomial ring in d variables over a field K. The edge ring of G is the semigroup ring K[G] which is generated by those monomials t (e)=t(i)t(j) such that e={i, j} is an edge of G. Let K[x]=K[x(1),..., x(n)] be the polynomial ring in n variables over K, and define the surjective homomorphism : K[x]K[G] by setting (x(i))=t (e)(i) for i=1,..., n. The toric ideal I-G of G is the kernel of . It will be proved that, given integers f and d with 6fd, there exists a finite connected nonbipartite graph G on [d] together with a reverse lexicographic order <(rev) on K[x] and a lexicographic order <(lex) on K[x] such that (i) K[G] is normal with Krull-dimK[G]=d, (ii) depthK[x]/in(<rev) (I-G)=f and K[x]/in(<lex) (I-G) is Cohen-Macaulay, where in(<rev) (I-G) (resp., in(<lex) (I-G)) is the initial ideal of I-G with respect to <(rev) (resp., <(lex)) and where depthK[x]/in(<rev) (I-G) is the depth of K[x]/in(<rev) (I-G).
引用
收藏
页码:2908 / 2922
页数:15
相关论文
共 50 条
  • [1] Depth and Stanley depth of the quotient rings of edge ideals of some lobster trees and unicyclic graphs
    Iqbal, Adnan
    Ishaq, Muhammad
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1886 - 1896
  • [2] STANLEY DEPTH OF EDGE IDEALS
    Ishaq, Muhammad
    Qureshi, Muhammad Imran
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2012, 49 (04) : 501 - 508
  • [3] On the normal ideals of exchange rings
    D. Lu
    T. Wu
    Siberian Mathematical Journal, 2008, 49 : 663 - 668
  • [4] Normal ideals in regular rings
    Huckaba, S
    Huneke, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 510 : 63 - 82
  • [5] NORMAL RINGS AND LOCAL IDEALS
    PARMENTER, MM
    STEWART, PN
    MATHEMATICA SCANDINAVICA, 1987, 60 (01) : 5 - 8
  • [6] On the normal ideals of exchange rings
    Lu, D.
    Wu, T.
    SIBERIAN MATHEMATICAL JOURNAL, 2008, 49 (04) : 663 - 668
  • [7] Normal ideals of graded rings
    Faridi, S
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (04) : 1971 - 1977
  • [8] On the depth of binomial edge ideals of graphs
    M. Rouzbahani Malayeri
    S. Saeedi Madani
    D. Kiani
    Journal of Algebraic Combinatorics, 2022, 55 : 827 - 846
  • [9] On the depth of binomial edge ideals of graphs
    Malayeri, M. Rouzbahani
    Madani, S. Saeedi
    Kiani, D.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) : 827 - 846
  • [10] On the Stanley depth of powers of edge ideals
    Fakhari, S. A. Seyed
    JOURNAL OF ALGEBRA, 2017, 489 : 463 - 474