On the distinctness of modular reductions of primitive sequences over Z/(232−1)

被引:0
|
作者
Qun-Xiong Zheng
Wen-Feng Qi
Tian Tian
机构
[1] Zhengzhou Information Science and Technology Institute,Department of Applied Mathematics
来源
关键词
Stream ciphers; Integer residue rings; Linear recurring sequences; Primitive sequences; Modular reductions; 11B50; 94A55; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the distinctness of modular reductions of primitive sequences over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1)}$$\end{document} . Let f(x) be a primitive polynomial of degree n over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1)}$$\end{document} and H a positive integer with a prime factor coprime with 232−1. Under the assumption that every element in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1)}$$\end{document} occurs in a primitive sequence of order n over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1)}$$\end{document} , it is proved that for two primitive sequences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{a}=(a(t))_{t\geq 0}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{b}=(b(t))_{t\geq 0}}$$\end{document} generated by f(x) over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1), \underline{a}=\underline{b}}$$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\left( t\right) \equiv b\left( t\right) \bmod{H}}$$\end{document} for all t ≥ 0. Furthermore, the assumption is known to be valid for n between 7 and 100, 000, the range of which is sufficient for practical applications.
引用
收藏
页码:359 / 368
页数:9
相关论文
共 50 条
  • [1] On the distinctness of modular reductions of primitive sequences over Z/(232-1)
    Zheng, Qun-Xiong
    Qi, Wen-Feng
    Tian, Tian
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 70 (03) : 359 - 368
  • [2] Further results on the distinctness of modulo 2 reductions of primitive sequences over Z/(232-1)
    Yang, Dong
    Qi, Wen-Feng
    Zheng, Qun-Xiong
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (02) : 467 - 480
  • [3] On the distinctness of primitive sequences over Z/(peq) modulo 2
    Cheng, Yuan
    Qi, Wen-Feng
    Zheng, Qun-Xiong
    Yang, Dong
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (03): : 371 - 381
  • [4] On the distinctness of primitive sequences over Z/(peq) modulo 2
    Yuan Cheng
    Wen-Feng Qi
    Qun-Xiong Zheng
    Dong Yang
    [J]. Cryptography and Communications, 2016, 8 : 371 - 381
  • [5] On the distinctness of modular reductions of primitive sequences modulo square-free odd integers
    Zheng, Qunxiong
    Qi, Wenfeng
    Tian, Tian
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (22) : 872 - 875
  • [6] A new result on the distinctness of primitive sequences over Z/(pq) modulo 2
    Zheng, Qun-Xiong
    Qi, Wen-Feng
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (03) : 254 - 274
  • [7] On the distinctness of modular reductions of maximal length sequences modulo odd prime powers
    Zhu, Xuan-Yong
    Qi, Wen-Feng
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (263) : 1623 - 1637
  • [8] On the distinctness of maximal length sequences over Z/(pq) modulo 2
    Chen, Hua-Jin
    Qi, Wen-Feng
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (01) : 23 - 39
  • [9] Compression mappings on primitive sequences over Z/(pe)
    Zhu, XY
    Qi, WF
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) : 2442 - 2448
  • [10] Injective maps on primitive sequences over Z/(pe)
    Sun Z.
    Qi W.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (4) : 469 - 477