On the distinctness of modular reductions of primitive sequences over Z/(232−1)

被引:0
|
作者
Qun-Xiong Zheng
Wen-Feng Qi
Tian Tian
机构
[1] Zhengzhou Information Science and Technology Institute,Department of Applied Mathematics
来源
关键词
Stream ciphers; Integer residue rings; Linear recurring sequences; Primitive sequences; Modular reductions; 11B50; 94A55; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the distinctness of modular reductions of primitive sequences over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1)}$$\end{document} . Let f(x) be a primitive polynomial of degree n over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1)}$$\end{document} and H a positive integer with a prime factor coprime with 232−1. Under the assumption that every element in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1)}$$\end{document} occurs in a primitive sequence of order n over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1)}$$\end{document} , it is proved that for two primitive sequences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{a}=(a(t))_{t\geq 0}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{b}=(b(t))_{t\geq 0}}$$\end{document} generated by f(x) over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{Z}/(2^{32}-1), \underline{a}=\underline{b}}$$\end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\left( t\right) \equiv b\left( t\right) \bmod{H}}$$\end{document} for all t ≥ 0. Furthermore, the assumption is known to be valid for n between 7 and 100, 000, the range of which is sufficient for practical applications.
引用
收藏
页码:359 / 368
页数:9
相关论文
共 50 条