Further results on the distinctness of modulo 2 reductions of primitive sequences over Z/(232-1)

被引:0
|
作者
Yang, Dong [1 ]
Qi, Wen-Feng [1 ]
Zheng, Qun-Xiong [1 ]
机构
[1] Zhengzhou Informat Sci & Technol Inst, State Key Lab Math Engn & Adv Comp, Zhengzhou, Peoples R China
关键词
Stream ciphers; Integer residue rings; Linear recurring sequences; Primitive sequences; Modular reductions;
D O I
10.1007/s10623-013-9871-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, primitive sequences over are shown to have many desirable properties, which makes them of potential interest for cryptographic applications. To further support the applications of this kind of sequences, in this paper, we consider the problem whether primitive sequences generated by two distinct primitive polynomials over are pairwise distinct modulo 2. A sufficient condition is given for ensuring that the answer to this problem is positive.
引用
收藏
页码:467 / 480
页数:14
相关论文
共 21 条
  • [1] On the distinctness of modular reductions of primitive sequences over Z/(232-1)
    Zheng, Qun-Xiong
    Qi, Wen-Feng
    Tian, Tian
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 70 (03) : 359 - 368
  • [2] On the distinctness of modular reductions of primitive sequences over Z/(232−1)
    Qun-Xiong Zheng
    Wen-Feng Qi
    Tian Tian
    [J]. Designs, Codes and Cryptography, 2014, 70 : 359 - 368
  • [3] On the distinctness of primitive sequences over Z/(peq) modulo 2
    Cheng, Yuan
    Qi, Wen-Feng
    Zheng, Qun-Xiong
    Yang, Dong
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (03): : 371 - 381
  • [4] On the distinctness of primitive sequences over Z/(peq) modulo 2
    Yuan Cheng
    Wen-Feng Qi
    Qun-Xiong Zheng
    Dong Yang
    [J]. Cryptography and Communications, 2016, 8 : 371 - 381
  • [5] A new result on the distinctness of primitive sequences over Z/(pq) modulo 2
    Zheng, Qun-Xiong
    Qi, Wen-Feng
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (03) : 254 - 274
  • [6] Further results on the distinctness of modulo 2 reductions of primitive sequences over Z/(232-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{Z}/(2^{32}-1)$$\end{document}
    Dong Yang
    Wen-Feng Qi
    Qun-Xiong Zheng
    [J]. Designs, Codes and Cryptography, 2015, 74 (2) : 467 - 480
  • [7] On the distinctness of maximal length sequences over Z/(pq) modulo 2
    Chen, Hua-Jin
    Qi, Wen-Feng
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (01) : 23 - 39
  • [8] On the distinctness of modular reductions of primitive sequences modulo square-free odd integers
    Zheng, Qunxiong
    Qi, Wenfeng
    Tian, Tian
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (22) : 872 - 875
  • [9] Further Results on the Distinctness of Binary Sequences Derived From Primitive Sequences Modulo Square-Free Odd Integers
    Zheng, Qun-Xiong
    Qi, Wen-Feng
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) : 4013 - 4019
  • [10] Further Result on Distribution Properties of Compressing Sequences Derived From Primitive Sequences Over Z/(pe)
    Zheng, Qun-Xiong
    Qi, Wen-Feng
    Tian, Tian
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (08) : 5016 - 5022