Special Lagrangian curvature

被引:0
|
作者
Graham Smith
机构
[1] Max Planck Institute,
来源
Mathematische Annalen | 2013年 / 355卷
关键词
Primary 53C42; Secondary 35J60; 58G03; 53C38;
D O I
暂无
中图分类号
学科分类号
摘要
We define the notion of special Lagrangian curvature, showing how it may be interpreted as an alternative higher dimensional generalisation of two dimensional Gaussian curvature. We obtain first a local rigidity result for this curvature when the ambient manifold has negative sectional curvature. We then show how this curvature relates to the canonical special Legendrian structure of spherical subbundles of the tangent bundle of the ambient manifold. This allows us to establish a strong compactness result. In the case where the special Lagrangian angle equals (n − 1)π/2, we obtain compactness modulo a unique mode of degeneration, where a sequence of hypersurfaces wraps ever tighter round a geodesic.
引用
收藏
页码:57 / 95
页数:38
相关论文
共 50 条
  • [21] Mean curvature flow of monotone Lagrangian submanifolds
    K. Groh
    M. Schwarz
    K. Smoczyk
    K. Zehmisch
    [J]. Mathematische Zeitschrift, 2007, 257 : 295 - 327
  • [22] Harnack inequality for the Lagrangian mean curvature flow
    Smoczyk, K
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 8 (03) : 247 - 258
  • [23] Statistics of the Lagrangian Trajectories' Curvature in Thermal Counterflow
    Sakaki, Naoto
    Maruyama, Takumi
    Tsuji, Yoshiyuki
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 208 (5-6) : 418 - 425
  • [24] Singularity of mean curvature flow of Lagrangian submanifolds
    Jingyi Chen
    Jiayu Li
    [J]. Inventiones mathematicae, 2004, 156 : 25 - 51
  • [25] Mean curvature flow of monotone Lagrangian submanifolds
    Groh, K.
    Schwarz, M.
    Smoczyk, K.
    Zehmisch, K.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (02) : 295 - 327
  • [26] Singularities of symplectic and Lagrangian mean curvature flows
    Xiaoli Han
    Jiayu Li
    [J]. Frontiers of Mathematics in China, 2009, 4 : 283 - 296
  • [27] Singularity of mean curvature flow of Lagrangian submanifolds
    Chen, JY
    Li, JY
    [J]. INVENTIONES MATHEMATICAE, 2004, 156 (01) : 25 - 51
  • [28] Singularities of symplectic and Lagrangian mean curvature flows
    Han, Xiaoli
    Li, Jiayu
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (02) : 283 - 296
  • [29] Hessian estimates for the Lagrangian mean curvature flow
    Bhattacharya, Arunima
    Wall, Jeremy
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [30] TRANSLATING SOLUTIONS TO LAGRANGIAN MEAN CURVATURE FLOW
    Neves, Andre
    Tian, Gang
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (11) : 5655 - 5680