Singularities of symplectic and Lagrangian mean curvature flows

被引:0
|
作者
Xiaoli Han
Jiayu Li
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] The Abdus Salam ICTP,Mathematics Group
[3] Chinese Academy of Sciences,Academy of Mathematics and System Sciences
来源
关键词
Symplectic surface; holomorphic curve; Lagrangian surface; minimal Lagrangian surface; mean curvature flow; 53C44; 35K55; 32Q20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the singularities of the mean curvature flow from a symplectic surface or from a Lagrangian surface in a Käahler-Einstein surface. We prove that the blow-up flow Σs∞ at a singular point (X0, T0) of a symplectic mean curvature flow Σt or of a Lagrangian mean curvature flow Σt is a nontrivial minimal surface in ℝ4, if Σ−∞∞ is connected.
引用
收藏
页码:283 / 296
页数:13
相关论文
共 50 条