Functional single-index quantile regression models

被引:1
|
作者
Peijun Sang
Jiguo Cao
机构
[1] University of Waterloo,Department of Statistics and Actuarial Science
[2] Simon Fraser University,Department of Statistics and Actuarial Science
来源
Statistics and Computing | 2020年 / 30卷
关键词
Functional data analysis; Generalized profiling; Quantile regression; Robustness; Single-index model;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that functional single-index regression models can achieve better prediction accuracy than functional linear models or fully nonparametric models, when the target is to predict a scalar response using a function-valued covariate. However, the performance of these models may be adversely affected by extremely large values or skewness in the response. In addition, they are not able to offer a full picture of the conditional distribution of the response. Motivated by using trajectories of PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{{10}}$$\end{document} concentrations of last day to predict the maximum PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{{10}}$$\end{document} concentration of the current day, a functional single-index quantile regression model is proposed to address those issues. A generalized profiling method is employed to estimate the model. Simulation studies are conducted to investigate the finite sample performance of the proposed estimator. We apply the proposed framework to predict the maximal value of PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{{10}}$$\end{document} concentrations based on the intraday PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{{10}}$$\end{document} concentrations of the previous day.
引用
收藏
页码:771 / 781
页数:10
相关论文
共 50 条
  • [1] Functional single-index quantile regression models
    Sang, Peijun
    Cao, Jiguo
    [J]. STATISTICS AND COMPUTING, 2020, 30 (04) : 771 - 781
  • [2] Functional single-index composite quantile regression
    Zhiqiang Jiang
    Zhensheng Huang
    Jing Zhang
    [J]. Metrika, 2023, 86 : 595 - 603
  • [3] Functional single-index composite quantile regression
    Jiang, Zhiqiang
    Huang, Zhensheng
    Zhang, Jing
    [J]. METRIKA, 2023, 86 (05) : 595 - 603
  • [4] Bayesian quantile regression for single-index models
    Hu, Yuao
    Gramacy, Robert B.
    Lian, Heng
    [J]. STATISTICS AND COMPUTING, 2013, 23 (04) : 437 - 454
  • [5] Bayesian quantile regression for single-index models
    Yuao Hu
    Robert B. Gramacy
    Heng Lian
    [J]. Statistics and Computing, 2013, 23 : 437 - 454
  • [6] Single-index quantile regression
    Wu, Tracy Z.
    Yu, Keming
    Yu, Yan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (07) : 1607 - 1621
  • [7] Single-index partially functional linear quantile regression
    Jiang, Zhiqiang
    Huang, Zhensheng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (05) : 1838 - 1850
  • [8] Weighted composite quantile regression for single-index models
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 148 : 34 - 48
  • [9] Bayesian Tobit quantile regression with single-index models
    Zhao, Kaifeng
    Lian, Heng
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (06) : 1247 - 1263
  • [10] Two step composite quantile regression for single-index models
    Jiang, Rong
    Zhou, Zhan-Gong
    Qian, Wei-Min
    Chen, Yong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 180 - 191