Weighted composite quantile regression for single-index models

被引:27
|
作者
Jiang, Rong [1 ]
Qian, Wei-Min [2 ]
Zhou, Zhan-Gong [3 ]
机构
[1] Donghua Univ, Coll Sci, Dept Math, Shanghai 201620, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[3] Jiaxing Univ, Nanhu Coll, Jiaxing 314001, Peoples R China
关键词
Single-index model; Weighted composite quantile regression; Adaptive LASSO; EFFICIENT ESTIMATION;
D O I
10.1016/j.jmva.2016.02.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose a weighted composite quantile regression (WCQR) estimation for single-index models. For parametric part, the WCQR is augmented using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same efficiency as the semi parametric maximum likelihood estimator for a variety of error distributions including the Normal, Student's t, Cauchy distributions, etc. Furthermore, based on the proposed WCQR, we use the adaptive-LASSO to study variable selection for parametric part in the single-index models. For nonparametric part, the WCQR is augmented combining the equal weighted estimators with possibly different weights, Because of the use of weights, the estimation bias is eliminated asymptotically. By comparing asymptotic relative efficiency theoretically and numerically, WCQR estimation all outperforms the CQR estimation and some other estimate methods, Under regularity conditions, the asymptotic properties of the proposed estimations are established. The simulation studies and two real data applications are conducted to illustrate the finite sample performance of the proposed methods. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:34 / 48
页数:15
相关论文
共 50 条
  • [1] Single-index composite quantile regression
    Jiang, Rong
    Zhou, Zhan-Gong
    Qian, Wei-Min
    Shao, Wen-Qiong
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (03) : 323 - 332
  • [2] Single-index composite quantile regression
    Rong Jiang
    Zhan-Gong Zhou
    Wei-Min Qian
    Wen-Qiong Shao
    [J]. Journal of the Korean Statistical Society, 2012, 41 : 323 - 332
  • [3] Two step composite quantile regression for single-index models
    Jiang, Rong
    Zhou, Zhan-Gong
    Qian, Wei-Min
    Chen, Yong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 180 - 191
  • [4] Composite quantile regression for single-index models with asymmetric errors
    Sun, Jing
    [J]. COMPUTATIONAL STATISTICS, 2016, 31 (01) : 329 - 351
  • [5] Composite quantile regression for single-index models with asymmetric errors
    Jing Sun
    [J]. Computational Statistics, 2016, 31 : 329 - 351
  • [6] Test for single-index composite quantile regression
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (05): : 861 - 871
  • [7] Functional single-index composite quantile regression
    Zhiqiang Jiang
    Zhensheng Huang
    Jing Zhang
    [J]. Metrika, 2023, 86 : 595 - 603
  • [8] Functional single-index composite quantile regression
    Jiang, Zhiqiang
    Huang, Zhensheng
    Zhang, Jing
    [J]. METRIKA, 2023, 86 (05) : 595 - 603
  • [9] Functional single-index quantile regression models
    Sang, Peijun
    Cao, Jiguo
    [J]. STATISTICS AND COMPUTING, 2020, 30 (04) : 771 - 781
  • [10] Composite quantile regression for varying-coefficient single-index models
    Fan, Yan
    Tang, Manlai
    Tian, Maozai
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (10) : 3027 - 3047