Single-index partially functional linear quantile regression

被引:3
|
作者
Jiang, Zhiqiang [1 ]
Huang, Zhensheng [2 ]
机构
[1] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
基金
国家教育部科学基金资助;
关键词
B-splines; functional data analysis; quantile regression; single-index partially functional linear regression; tecator data; VARIABLE SELECTION; CONVERGENCE; RATES;
D O I
10.1080/03610926.2022.2116282
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tecator dataset has been widely used in the content of functional data analysis. As far as we know, this dataset is only considered under mean regression, which is easily affected by outliers. However, there are 8 more fat samples and 17 more protein samples in this dataset, so, in this paper, we explore this dataset by quantile regression, which is a robust method. Single-index partially functional linear quantile regression is proposed, and B-splines are used to estimate the unknown link function in the single-index component and the unknown slope function in the functional linear component. We establish the convergence rates and asymptotic normality of the estimators. Simulation studies and a real data application are presented to illustrate the performance of the proposed methodologies.
引用
收藏
页码:1838 / 1850
页数:13
相关论文
共 50 条
  • [1] Single-index partially functional linear regression model
    Ping Yu
    Jiang Du
    Zhongzhan Zhang
    [J]. Statistical Papers, 2020, 61 : 1107 - 1123
  • [2] Quantile regression of partially linear single-index model with missing observations
    Liang, Han-Ying
    Wang, Bao-Hua
    Shen, Yu
    [J]. STATISTICS, 2021, 55 (01) : 1 - 17
  • [3] Single-index partially functional linear regression model
    Yu, Ping
    Du, Jiang
    Zhang, Zhongzhan
    [J]. STATISTICAL PAPERS, 2020, 61 (03) : 1107 - 1123
  • [4] Functional single-index quantile regression models
    Sang, Peijun
    Cao, Jiguo
    [J]. STATISTICS AND COMPUTING, 2020, 30 (04) : 771 - 781
  • [5] Functional single-index composite quantile regression
    Zhiqiang Jiang
    Zhensheng Huang
    Jing Zhang
    [J]. Metrika, 2023, 86 : 595 - 603
  • [6] Functional single-index composite quantile regression
    Jiang, Zhiqiang
    Huang, Zhensheng
    Zhang, Jing
    [J]. METRIKA, 2023, 86 (05) : 595 - 603
  • [7] Functional single-index quantile regression models
    Peijun Sang
    Jiguo Cao
    [J]. Statistics and Computing, 2020, 30 : 771 - 781
  • [8] Single-index quantile regression
    Wu, Tracy Z.
    Yu, Keming
    Yu, Yan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (07) : 1607 - 1621
  • [9] Quantile regression and variable selection for partially linear single-index models with missing censoring indicators
    Zou, Yuye
    Fan, Guoliang
    Zhang, Riquan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 204 : 80 - 95
  • [10] Single-index Thresholding in Quantile Regression
    Zhang, Yingying
    Wang, Huixia Judy
    Zhu, Zhongyi
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2222 - 2237