The obstacle problem for conformal metrics on compact Riemannian manifolds

被引:0
|
作者
Sijia Bao
Yuming Xing
机构
[1] Harbin Institute of Technology,Department of Mathematics
关键词
Obstacle problem; A priori estimates; Hessian equations; Viscosity solutions; Riemannian manifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a priori estimates up to their second order derivatives for solutions to the obstacle problem of curvature equations on Riemannian manifolds (Mn,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(M^{n}, g)$\end{document} arising from conformal deformation. With the a priori estimates the existence of a C1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C^{1,1} $\end{document} solution to the obstacle problem with Dirichlet boundary value is obtained by approximation.
引用
收藏
相关论文
共 50 条
  • [21] Conformal actions of higher rank lattices on compact pseudo-Riemannian manifolds
    Vincent Pecastaing
    Geometric and Functional Analysis, 2020, 30 : 955 - 987
  • [22] A non-smooth Neumann problem on compact Riemannian manifolds
    Szilak, Karoly
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 415 - 418
  • [23] THE RIEMANNIAN OBSTACLE PROBLEM
    ALEXANDER, SB
    BERG, ID
    BISHOP, RL
    ILLINOIS JOURNAL OF MATHEMATICS, 1987, 31 (01) : 167 - 184
  • [24] Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds
    Sorin Dumitrescu
    Abdelghani Zeghib
    Mathematische Annalen, 2009, 345
  • [25] Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds
    Dumitrescu, Sorin
    Zeghib, Abdelghani
    MATHEMATISCHE ANNALEN, 2009, 345 (01) : 53 - 81
  • [26] Compact conformal manifolds
    Matthew Buican
    Takahiro Nishinaka
    Journal of High Energy Physics, 2015
  • [27] Compact conformal manifolds
    Buican, Matthew
    Nishinaka, Takahiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01):
  • [28] Consensus on compact Riemannian manifolds
    Chen, Sheng
    Zhao, Lindu
    Zhang, Weigong
    Shi, Peng
    INFORMATION SCIENCES, 2014, 268 : 220 - 230
  • [29] Conformal Killing forms on Riemannian manifolds
    Semmelmann, U
    MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (03) : 503 - 527
  • [30] TENSOR OF CONFORMAL CONFORMITY OF RIEMANNIAN MANIFOLDS
    PUGACHOV, YI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (04): : 115 - 120