Electrochemical stiffness in lithium-ion batteries

被引:0
|
作者
Hadi Tavassol
Elizabeth M. C. Jones
Nancy R. Sottos
Andrew A. Gewirth
机构
[1] Department of Chemistry,
[2] Department of Mechanical Science and Engineering,undefined
[3] Beckman Institute of Science and Technology,undefined
[4] Department of Material Science and Engineering,undefined
来源
Nature Materials | 2016年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Although lithium-ion batteries are ubiquitous in portable electronics, increased charge rate and discharge power are required for more demanding applications such as electric vehicles. The high-rate exchange of lithium ions required for more power and faster charging generates significant stresses and strains in the electrodes that ultimately lead to performance degradation. To date, electrochemically induced stresses and strains in battery electrodes have been studied only individually. Here, a new technique is developed to probe the chemomechanical response of electrodes by calculating the electrochemical stiffness via coordinated in situ stress and strain measurements. We show that dramatic changes in electrochemical stiffness occur due to the formation of different graphite–lithium intercalation compounds during cycling. Our analysis reveals that stress scales proportionally with the lithiation/delithiation rate and strain scales proportionally with capacity (and inversely with rate). Electrochemical stiffness measurements provide new insights into the origin of rate-dependent chemomechanical degradation and the evaluation of advanced battery electrodes.
引用
收藏
页码:1182 / 1187
页数:5
相关论文
共 50 条
  • [31] A review of the electrochemical performance of alloy anodes for lithium-ion batteries
    Zhang, Wei-Jun
    JOURNAL OF POWER SOURCES, 2011, 196 (01) : 13 - 24
  • [32] Quantification of electrochemical-mechanical coupling in lithium-ion batteries
    Yuan, Chunhao
    Hahn, Youngwon
    Lu, Wenquan
    Oancea, Victor
    Xu, Jun
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (12):
  • [33] Mechano-electrochemical perspectives on flexible lithium-ion batteries
    Na Li
    Shuangquan Yang
    Haosen Chen
    Shuqiang Jiao
    Weili Song
    International Journal of Minerals, Metallurgy and Materials, 2022, 29 : 1019 - 1036
  • [34] Electrochemical properties of macroporous carbon for electrodes of lithium-ion batteries
    Take, H
    Kajii, H
    Yoshino, K
    SYNTHETIC METALS, 2001, 121 (1-3) : 1313 - 1314
  • [35] Model-Based Electrochemical Estimation of Lithium-Ion Batteries
    Smith, Kandler A.
    Rahn, Christopher D.
    Wang, Chao-Yang
    2008 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2008, : 122 - 127
  • [36] Thermal Stability and Electrochemical Properties of Separators for Lithium-ion Batteries
    Yi, Guangyuan
    Xu, Caiyun
    Liu, Wan
    Qu, Deyu
    Wang, Hongbing
    Tang, Haolin
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (06): : 1231 - 1241
  • [37] Electrochemical behavior and passivation of current collectors in lithium-ion batteries
    Myung, Seung-Taek
    Hitoshi, Yashiro
    Sun, Yang-Kook
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) : 9891 - 9911
  • [38] Recent progress on lithium-ion batteries with high electrochemical performance
    Yong Lu
    Qiu Zhang
    Jun Chen
    Science China Chemistry, 2019, 62 : 533 - 548
  • [39] Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries
    E. V. Astrova
    G. V. Li
    A. M. Rumyantsev
    V. V. Zhdanov
    Semiconductors, 2016, 50 : 276 - 283
  • [40] Thermal and electrochemical stability of organosilicon electrolytes for lithium-ion batteries
    Chen, Xin
    Usrey, Monica
    Pena-Hueso, Adrian
    West, Robert
    Hamers, Robert J.
    JOURNAL OF POWER SOURCES, 2013, 241 : 311 - 319