Renormalization on noncommutative torus

被引:0
|
作者
D. D’Ascanio
P. Pisani
D. V. Vassilevich
机构
[1] Universidad Nacional de La Plata,Instituto de Física La Plata
[2] Universidade Federal do ABC,CONICET
[3] Tomsk State University,CMCC
来源
关键词
Heat Kernel; Star Product; External Momentum; Diophantine Condition; Noncommutativity Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
We study a self-interacting scalar φ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi ^4$$\end{document} theory on the d-dimensional noncommutative torus. We determine, for the particular cases d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document}, the counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points toward the absence of any problems related to the ultraviolet/infrared mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Renormalization of noncommutative quantum field theories
    de Queiroz, Amilcar R.
    Srivastava, Rahul
    Vaidya, Sachindeo
    PHYSICAL REVIEW D, 2013, 87 (06):
  • [32] RENORMALIZATION OF MAPPINGS OF THE 2-TORUS
    KIM, SH
    OSTLUND, S
    PHYSICAL REVIEW LETTERS, 1985, 55 (11) : 1165 - 1168
  • [33] RENORMALIZATION ON THE N-DIMENSIONAL TORUS
    BALADI, V
    ROCKMORE, D
    TONGRING, N
    TRESSER, C
    NONLINEARITY, 1992, 5 (05) : 1111 - 1136
  • [34] An approach to renormalization on the n-torus
    Rockmore, Daniel
    Siegel, Ralph
    Tongring, Nils
    Tresser, Charles
    CHAOS, 1991, 1 (01) : 25 - 30
  • [35] On Projections in the Noncommutative 2-Torus Algebra
    Eckstein, Michal
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
  • [36] On spin structures and dirac operators on the noncommutative torus
    Paschke, Mario
    Sitarz, Andrzej
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (03) : 317 - 327
  • [37] On Spin Structures and Dirac Operators on the Noncommutative Torus
    Mario Paschke
    Andrzej Sitarz
    Letters in Mathematical Physics, 2006, 77 : 317 - 327
  • [38] Casimir effect on the radius stabilization of the noncommutative torus
    Huang, WH
    PHYSICS LETTERS B, 2001, 497 (3-4) : 317 - 322
  • [39] A geometric approach to noncommutative principal torus bundles
    Wagner, Stefan
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 : 1179 - 1222
  • [40] On logarithmic Sobolev inequality for the noncommutative two torus
    Masoud Khalkhali
    Sajad Sadeghi
    Journal of Pseudo-Differential Operators and Applications, 2017, 8 : 453 - 484