Renormalization on noncommutative torus

被引:0
|
作者
D. D’Ascanio
P. Pisani
D. V. Vassilevich
机构
[1] Universidad Nacional de La Plata,Instituto de Física La Plata
[2] Universidade Federal do ABC,CONICET
[3] Tomsk State University,CMCC
来源
关键词
Heat Kernel; Star Product; External Momentum; Diophantine Condition; Noncommutativity Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
We study a self-interacting scalar φ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi ^4$$\end{document} theory on the d-dimensional noncommutative torus. We determine, for the particular cases d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document}, the counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points toward the absence of any problems related to the ultraviolet/infrared mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Spin geometry of the rational noncommutative torus
    Carotenuto, Alessandro
    Dabrowski, Ludwik
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 144 : 28 - 42
  • [22] D-branes and the noncommutative torus
    Douglas, MR
    Hull, C
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (02):
  • [23] Scalar curvature for the noncommutative two torus
    Fathizadeh, Farzad
    Khalkhali, Masoud
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (04) : 1145 - 1183
  • [24] New soliton solutions in noncommutative torus
    Wen, JQ
    Zhu, Q
    Shi, KJ
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2006, 30 (02): : 89 - 93
  • [25] Hopf Algebras, Renormalization and Noncommutative Geometry
    Alain Connes
    Dirk Kreimer
    Communications in Mathematical Physics, 1998, 199 : 203 - 242
  • [26] Hopf algebras, renormalization and noncommutative geometry
    Connes, A
    Kreimer, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (01) : 203 - 242
  • [27] Renormalization problems in noncommutative gauge theories
    Bonora, L
    Salizzoni, M
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 102 : 139 - 143
  • [28] Hopf algebras, renormalization and noncommutative geometry
    Connes, A
    Kreimer, D
    QUANTUM FIELD THEORY: PERSPECTIVE AND PROSPECTIVE, 1999, 530 : 59 - 109
  • [29] Renormalization problems in noncommutative gauge theories
    Bonora, L
    Salizzoni, A
    NEW DEVELOPMENTS IN FUNDAMENTAL INTERACTION THEORIES, 2001, 589 : 151 - 157
  • [30] Translation-Invariant Noncommutative Renormalization
    Tanasa, Adrian
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6