Renormalization on noncommutative torus

被引:0
|
作者
D. D’Ascanio
P. Pisani
D. V. Vassilevich
机构
[1] Universidad Nacional de La Plata,Instituto de Física La Plata
[2] Universidade Federal do ABC,CONICET
[3] Tomsk State University,CMCC
来源
关键词
Heat Kernel; Star Product; External Momentum; Diophantine Condition; Noncommutativity Parameter;
D O I
暂无
中图分类号
学科分类号
摘要
We study a self-interacting scalar φ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi ^4$$\end{document} theory on the d-dimensional noncommutative torus. We determine, for the particular cases d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document}, the counterterms required by one-loop renormalization. We discuss higher loops in two dimensions and two-loop contributions to the self-energy in four dimensions. Our analysis points toward the absence of any problems related to the ultraviolet/infrared mixing and thus to renormalizability of the theory. However, we find another potentially troubling phenomenon which is a wild behavior of the two-point amplitude as a function of the noncommutativity matrix θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Renormalization on noncommutative torus
    D'Ascanio, D.
    Pisani, P.
    Vassilevich, D. V.
    EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (04):
  • [2] THE CANONICAL TRACE AND THE NONCOMMUTATIVE RESIDUE ON THE NONCOMMUTATIVE TORUS
    Levy, Cyril
    Jimenez, Carolina Neira
    Paycha, Sylvie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (02) : 1051 - 1095
  • [3] Noncommutative QFT and renormalization
    Grosse, Harald
    Wulkenhaar, Raimar
    QUANTUM GRAVITY: MATHEMATICAL MODELS AND EXPERIMENTAL BOUNDS, 2007, : 315 - +
  • [4] Noncommutative QFT and renormalization
    Grosse, H
    Wulkenhaar, R
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (2-3): : 116 - 123
  • [5] Skein modules and the noncommutative torus
    Frohman, C
    Gelca, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) : 4877 - 4888
  • [6] Vortex solutions in the noncommutative torus
    Lozano, Gustavo S.
    Marques, Diego
    Schaposnik, Fidel A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (09):
  • [7] Matrix theory on noncommutative torus
    Kawano, T
    Okuyama, K
    PHYSICS LETTERS B, 1998, 433 (1-2) : 29 - 34
  • [8] QUANTUM DIFFUSIONS AND THE NONCOMMUTATIVE TORUS
    HUDSON, RL
    ROBINSON, P
    LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (01) : 47 - 53
  • [9] Tachyon condensation on a noncommutative torus
    Bars, I
    Kajiura, H
    Matsuo, Y
    Takayanagi, T
    PHYSICAL REVIEW D, 2001, 63 (08)
  • [10] Soliton solutions in noncommutative torus
    Wen, Jun-Qing
    Zhu, Qiao
    Shi, Kang-Jie
    Kao Neng Wu Li Yu Ho Wu Li/High Energy Physics and Nuclear Physics, 2006, 30 (02): : 89 - 93