Many-to-Many Communication in Radio Networks

被引:0
|
作者
Bogdan S. Chlebus
Dariusz R. Kowalski
Tomasz Radzik
机构
[1] University of Colorado Denver,Department of Computer Science and Engineering
[2] University of Liverpool,Department of Computer Science
[3] King’s College London,Department of Computer Science
来源
Algorithmica | 2009年 / 54卷
关键词
Radio network; Many-to-many communication; Broadcast; Gossiping; Centralized protocol; Distributed protocol; Randomization;
D O I
暂无
中图分类号
学科分类号
摘要
Radio networks model wireless data communication when the bandwidth is limited to one wave frequency. The key restriction of such networks is mutual interference of packets arriving simultaneously at a node. The many-to-many (m2m) communication primitive involves p participant nodes from among n nodes in the network, where the distance between any pair of participants is at most d. The task is to have all the participants get to know all the input messages. We consider three cases of the m2m communication problem. In the ad-hoc case, each participant knows only its name and the values of n, p and d. In the partially centralized case, each participant knows the topology of the network and the values of p and d, but does not know the names of the other participants. In the centralized case, each participant knows the topology of the network and the names of all the participants. For the centralized m2m problem, we give deterministic protocols, for both undirected and directed networks, working in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}(d+p)$\end{document} time, which is provably optimal. For the partially centralized m2m problem, we give a randomized protocol for undirected networks working in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}((d+p+\log^{2}n)\log p)$\end{document} time with high probability (whp), and we show that any deterministic protocol requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(d+p\frac{\log n}{\log p})$\end{document} time. For the ad-hoc m2m problem, we develop a randomized protocol for undirected networks that works in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}((d+\log p)\log^{2}n+p\log p)$\end{document} time whp. We show two lower bounds for the ad-hoc m2m problem. One lower bound states that any randomized protocol for the m2m ad hoc problem requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(p+d\log\frac{n}{d})$\end{document} expected time. Another lower bound states that for any deterministic protocol for the m2m ad hoc problem, there is a network on which the protocol requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n\frac{\log n}{\log(n/d)})$\end{document} time when n−p(n)=Ω(n) and d>1, and that it requires Ω(n) time when n−p(n)=o(n).
引用
收藏
页码:118 / 139
页数:21
相关论文
共 50 条
  • [31] Separation of superimposed pattern and many-to-many associations by chaotic neural networks
    Osana, Y
    Hagiwara, M
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 514 - 519
  • [32] A secure many-to-many routing protocol for wireless sensor and actuator networks
    Nguyen, Son T.
    Cayirci, Erdal
    Rong, Chunming
    SECURITY AND COMMUNICATION NETWORKS, 2014, 7 (01) : 88 - 98
  • [33] Piggybacking assisted many-to-Many communication with efficient vehicle selection for improved performance in vehicular ad hoc networks
    Patra, Moumita
    Murthy, C. Siva Ram
    COMPUTER NETWORKS, 2016, 108 : 223 - 232
  • [34] Green Provisioning of Many-to-Many Sessions Over WDM Optical Networks
    Guo, Lei
    Hou, Weigang
    Zheng, Zeyu
    Gong, Xiaoxue
    Lv, Size
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (20) : 3289 - 3301
  • [35] THE BREAK-BULK ROLE OF TERMINALS IN MANY-TO-MANY LOGISTIC NETWORKS
    DAGANZO, CF
    OPERATIONS RESEARCH, 1987, 35 (04) : 543 - 555
  • [36] Many-to-Many Data Collection for Mobile Users in Wireless Sensor Networks
    Huang, Chi-Fu
    Lin, Wei-Chen
    ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING: FUTURE INFORMATION TECHNOLOGY, 2015, 352 : 143 - 148
  • [37] Enabling reliable many-to-many communication in ad-hoc pervasive environments
    Vollset, E
    Ezhilchelvan, P
    THIRD IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS, WORKSHOPS, 2005, : 65 - 69
  • [38] Performance of Dynamic Many-to-Many Routing in WDM and Elastic Optical Networks
    Bulira, Damian
    Walkowiak, Krzysztof
    2015 17th International Conference on Transparent Optical Networks (ICTON), 2015,
  • [39] Implementation in the many-to-many matching market
    Sotomayor, M
    GAMES AND ECONOMIC BEHAVIOR, 2004, 46 (01) : 199 - 212
  • [40] SEARCH MEMORY FOR MANY-TO-MANY COMPARISONS
    DIGBY, DW
    IEEE TRANSACTIONS ON COMPUTERS, 1973, C-22 (08) : 768 - 772