Many-to-Many Communication in Radio Networks

被引:0
|
作者
Bogdan S. Chlebus
Dariusz R. Kowalski
Tomasz Radzik
机构
[1] University of Colorado Denver,Department of Computer Science and Engineering
[2] University of Liverpool,Department of Computer Science
[3] King’s College London,Department of Computer Science
来源
Algorithmica | 2009年 / 54卷
关键词
Radio network; Many-to-many communication; Broadcast; Gossiping; Centralized protocol; Distributed protocol; Randomization;
D O I
暂无
中图分类号
学科分类号
摘要
Radio networks model wireless data communication when the bandwidth is limited to one wave frequency. The key restriction of such networks is mutual interference of packets arriving simultaneously at a node. The many-to-many (m2m) communication primitive involves p participant nodes from among n nodes in the network, where the distance between any pair of participants is at most d. The task is to have all the participants get to know all the input messages. We consider three cases of the m2m communication problem. In the ad-hoc case, each participant knows only its name and the values of n, p and d. In the partially centralized case, each participant knows the topology of the network and the values of p and d, but does not know the names of the other participants. In the centralized case, each participant knows the topology of the network and the names of all the participants. For the centralized m2m problem, we give deterministic protocols, for both undirected and directed networks, working in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}(d+p)$\end{document} time, which is provably optimal. For the partially centralized m2m problem, we give a randomized protocol for undirected networks working in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}((d+p+\log^{2}n)\log p)$\end{document} time with high probability (whp), and we show that any deterministic protocol requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(d+p\frac{\log n}{\log p})$\end{document} time. For the ad-hoc m2m problem, we develop a randomized protocol for undirected networks that works in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}((d+\log p)\log^{2}n+p\log p)$\end{document} time whp. We show two lower bounds for the ad-hoc m2m problem. One lower bound states that any randomized protocol for the m2m ad hoc problem requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(p+d\log\frac{n}{d})$\end{document} expected time. Another lower bound states that for any deterministic protocol for the m2m ad hoc problem, there is a network on which the protocol requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n\frac{\log n}{\log(n/d)})$\end{document} time when n−p(n)=Ω(n) and d>1, and that it requires Ω(n) time when n−p(n)=o(n).
引用
收藏
页码:118 / 139
页数:21
相关论文
共 50 条
  • [21] Design and Provisioning of WDM Networks With Many-to-Many Traffic Grooming
    Saleh, Mohammad A.
    Kamal, Ahmed E.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2010, 18 (06) : 1869 - 1882
  • [22] Creek: Inter Many-to-Many Coflows Scheduling for Datacenter Networks
    Susanto, Hengky
    Abdelmoniem, Ahmed M.
    Jin, Hao
    Bensaou, Brahim
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [23] Training Many-to-Many Recurrent Neural Networks with Target Propagation
    Dai, Peilun
    Chin, Sang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 433 - 443
  • [24] Optimizing Many-to-Many Data Aggregation in Wireless Sensor Networks
    Xiong, Shuguang
    Li, Jianzhong
    ADVANCES IN DATA AND WEB MANAGEMENT, PROCEEDINGS, 2009, 5446 : 550 - 555
  • [25] Many-to-Many Pair Trading
    Wang, Yingying
    Li, Xiaodong
    Wu, Pangjing
    Xie, Haoran
    WEB AND BIG DATA, PT I, APWEB-WAIM 2022, 2023, 13421 : 399 - 407
  • [26] IMPERFECT MANY-TO-MANY TELEPORTATION
    Ghiu, Iulia
    Isdraila, Tudor
    Suciu, Serban
    ROMANIAN JOURNAL OF PHYSICS, 2012, 57 (3-4): : 564 - 570
  • [27] Many-To-Many Innovation Contexts
    D'Auria, Anna
    Tregua, Marco
    Spena, Tiziana Russo
    Bifulco, Francesco
    IFKAD 2015: 10TH INTERNATIONAL FORUM ON KNOWLEDGE ASSET DYNAMICS: CULTURE, INNOVATION AND ENTREPRENEURSHIP: CONNECTING THE KNOWLEDGE DOTS, 2015, : 2082 - 2093
  • [28] Approximation Algorithms for Many-to-Many Traffic Grooming in Optical WDM Networks
    Saleh, Mohammad A.
    Kamal, Ahmed E.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2012, 20 (05) : 1527 - 1540
  • [29] Approximation Algorithms for Many-to-Many Traffic Grooming in WDM Mesh Networks
    Saleh, Mohammad A.
    Kamal, Ahmed E.
    2010 PROCEEDINGS IEEE INFOCOM, 2010,
  • [30] Distributed relay selection for heterogeneous UAV communication networks using a many-to-many matching game without substitutability
    Liu, Dianxiong
    Xu, Yuhua
    Xu, Yitao
    Wu, Qihui
    Jing, Jianjun
    Zhang, Yuanhui
    Anpalagan, Alagan
    2017 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2017, : 238 - 243