Many-to-Many Communication in Radio Networks

被引:0
|
作者
Bogdan S. Chlebus
Dariusz R. Kowalski
Tomasz Radzik
机构
[1] University of Colorado Denver,Department of Computer Science and Engineering
[2] University of Liverpool,Department of Computer Science
[3] King’s College London,Department of Computer Science
来源
Algorithmica | 2009年 / 54卷
关键词
Radio network; Many-to-many communication; Broadcast; Gossiping; Centralized protocol; Distributed protocol; Randomization;
D O I
暂无
中图分类号
学科分类号
摘要
Radio networks model wireless data communication when the bandwidth is limited to one wave frequency. The key restriction of such networks is mutual interference of packets arriving simultaneously at a node. The many-to-many (m2m) communication primitive involves p participant nodes from among n nodes in the network, where the distance between any pair of participants is at most d. The task is to have all the participants get to know all the input messages. We consider three cases of the m2m communication problem. In the ad-hoc case, each participant knows only its name and the values of n, p and d. In the partially centralized case, each participant knows the topology of the network and the values of p and d, but does not know the names of the other participants. In the centralized case, each participant knows the topology of the network and the names of all the participants. For the centralized m2m problem, we give deterministic protocols, for both undirected and directed networks, working in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}(d+p)$\end{document} time, which is provably optimal. For the partially centralized m2m problem, we give a randomized protocol for undirected networks working in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}((d+p+\log^{2}n)\log p)$\end{document} time with high probability (whp), and we show that any deterministic protocol requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(d+p\frac{\log n}{\log p})$\end{document} time. For the ad-hoc m2m problem, we develop a randomized protocol for undirected networks that works in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}((d+\log p)\log^{2}n+p\log p)$\end{document} time whp. We show two lower bounds for the ad-hoc m2m problem. One lower bound states that any randomized protocol for the m2m ad hoc problem requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(p+d\log\frac{n}{d})$\end{document} expected time. Another lower bound states that for any deterministic protocol for the m2m ad hoc problem, there is a network on which the protocol requires \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega(n\frac{\log n}{\log(n/d)})$\end{document} time when n−p(n)=Ω(n) and d>1, and that it requires Ω(n) time when n−p(n)=o(n).
引用
收藏
页码:118 / 139
页数:21
相关论文
共 50 条
  • [1] Many-to-Many Communication in Radio Networks
    Chlebus, Bogdan S.
    Kowalski, Dariusz R.
    Radzik, Tomasz
    ALGORITHMICA, 2009, 54 (01) : 118 - 139
  • [2] On many-to-many communication in packet radio networks
    Chlebus, Bogdan S.
    Kowalski, Dariusz R.
    Radzik, Tomasz
    PRINCIPLES OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2006, 4305 : 260 - 274
  • [3] Multi-objective Optimization for Many-to-Many Communication in Cognitive Radio Networks
    Almasoud, Abdullah M.
    Kamal, Ahmed E.
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [4] Many-to-Many Communication for Mobile Ad Hoc Networks
    de Moraes, Renato M.
    Sadjadpour, Hamid R.
    Garcia-Luna-Aceves, J. J.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (05) : 2388 - 2399
  • [5] Conveyors for Streaming Many-To-Many Communication
    Maley, F. Miller
    DeVinney, Jason G.
    2019 IEEE/ACM 9TH WORKSHOP ON IRREGULAR APPLICATIONS - ARCHITECTURES AND ALGORITHMS (IA3), 2019, : 1 - 8
  • [6] Many-to-many aggregation for sensor networks
    Silberstein, Adam
    Yang, Jun
    2007 IEEE 23RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2007, : 961 - +
  • [7] Aggregated hierarchical multicast - A many-to-many communication paradigm using programmable networks
    Wolf, T
    Choi, SY
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2003, 33 (03): : 358 - 369
  • [8] A reliable many-to-many multicast protocol for group communication over ATM networks
    Koch, RR
    Moser, LE
    Melliar-Smith, PM
    DSN 2000: INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS, PROCEEDINGS, 2000, : 337 - 346
  • [9] Generalized Survivability Models for Many-to-Many Communication
    Davis, Dylan A. P.
    Vokkarane, Vinod M.
    2018 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2018, : 729 - 735
  • [10] Many-to-Many Traffic Grooming in WDM Networks
    Saleh, Mohammad A.
    Kamal, Ahmed E.
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2009, 1 (05) : 376 - 391