Wiman–Valiron Theory for a Polynomial Series Based on the Askey–Wilson Operator

被引:1
|
作者
Kam Hang Cheng
Yik-Man Chiang
机构
[1] The Hong Kong University of Science and Technology,Department of Mathematics
来源
关键词
Askey–Wilson operator; Complex function theory; Wiman–Valiron theory; Interpolation series; Primary 30D10; Secondary 30B50; 30D20; 30E05; 33D45; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a Wiman–Valiron theory of a polynomial series based on the Askey–Wilson operator Dq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_q$$\end{document}, where q∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (0,1)$$\end{document}. For an entire function f of log-order smaller than 2, this theory includes (i) an estimate which shows that f behaves locally like a polynomial consisting of the terms near the maximal term of its Askey–Wilson series expansion, and (ii) an estimate of Dqnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_q^n f$$\end{document} compared to f. We then apply this theory in studying the growth of entire solutions to difference equations involving the Askey–Wilson operator.
引用
收藏
页码:259 / 294
页数:35
相关论文
共 50 条