共 50 条
Wiman–Valiron Theory for a Polynomial Series Based on the Askey–Wilson Operator
被引:1
|作者:
Kam Hang Cheng
Yik-Man Chiang
机构:
[1] The Hong Kong University of Science and Technology,Department of Mathematics
来源:
关键词:
Askey–Wilson operator;
Complex function theory;
Wiman–Valiron theory;
Interpolation series;
Primary 30D10;
Secondary 30B50;
30D20;
30E05;
33D45;
39A13;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We establish a Wiman–Valiron theory of a polynomial series based on the Askey–Wilson operator Dq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {D}}_q$$\end{document}, where q∈(0,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q\in (0,1)$$\end{document}. For an entire function f of log-order smaller than 2, this theory includes (i) an estimate which shows that f behaves locally like a polynomial consisting of the terms near the maximal term of its Askey–Wilson series expansion, and (ii) an estimate of Dqnf\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {D}}_q^n f$$\end{document} compared to f. We then apply this theory in studying the growth of entire solutions to difference equations involving the Askey–Wilson operator.
引用
收藏
页码:259 / 294
页数:35
相关论文