Wiman–Valiron Theory for a Polynomial Series Based on the Askey–Wilson Operator

被引:1
|
作者
Kam Hang Cheng
Yik-Man Chiang
机构
[1] The Hong Kong University of Science and Technology,Department of Mathematics
来源
关键词
Askey–Wilson operator; Complex function theory; Wiman–Valiron theory; Interpolation series; Primary 30D10; Secondary 30B50; 30D20; 30E05; 33D45; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a Wiman–Valiron theory of a polynomial series based on the Askey–Wilson operator Dq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_q$$\end{document}, where q∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (0,1)$$\end{document}. For an entire function f of log-order smaller than 2, this theory includes (i) an estimate which shows that f behaves locally like a polynomial consisting of the terms near the maximal term of its Askey–Wilson series expansion, and (ii) an estimate of Dqnf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_q^n f$$\end{document} compared to f. We then apply this theory in studying the growth of entire solutions to difference equations involving the Askey–Wilson operator.
引用
收藏
页码:259 / 294
页数:35
相关论文
共 50 条
  • [21] TWO-VARIABLE WIMAN-VALIRON THEORY AND PDES
    Fenton, P. C.
    Rossi, John
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2010, 35 (02) : 571 - 580
  • [22] The Heun-Askey-Wilson Algebra and the Heun Operator of Askey-Wilson Type
    Baseilhac, Pascal
    Tsujimoto, Satoshi
    Vinet, Luc
    Zhedanov, Alexei
    ANNALES HENRI POINCARE, 2019, 20 (09): : 3091 - 3112
  • [23] Basics of a generalized Wiman-Valiron theory for monogenic Taylor series of finite convergence radius
    Constales, D.
    De Almeida, R.
    Krausshar, R. S.
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (03) : 665 - 681
  • [24] EXTREMAL PROBLEMS IN THEORY OF CENTRAL WIMAN-VALIRON INDEX
    Malyutin, K. G.
    Kabanko, M., V
    Maliutin, V. A.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (01): : 68 - 76
  • [25] A RIGHT INVERSE OF THE ASKEY-WILSON OPERATOR
    BROWN, BM
    ISMAIL, MEH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) : 2071 - 2079
  • [26] A NON-POWER SERIES APPROACH TO WIMAN-VALIRON TYPE THEOREMS
    Fenton, P. C.
    Rossi, John
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 343 - 355
  • [27] A Bernstein type inequality for the Askey-Wilson operator
    Li, Xin
    Ranasinghe, Rajitha
    JOURNAL OF APPROXIMATION THEORY, 2019, 240 : 145 - 157
  • [28] Formulas and identities involving the Askey-Wilson operator
    Ismail, Mourad E. H.
    Simeonov, Plamen
    ADVANCES IN APPLIED MATHEMATICS, 2016, 76 : 68 - 96
  • [30] GRADIENT SYSTEM FOR THE ROOTS OF THE ASKEY-WILSON POLYNOMIAL
    Van Diejen, J. F.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) : 5239 - 5249