Total Forcing and Zero Forcing in Claw-Free Cubic Graphs

被引:0
|
作者
Randy Davila
Michael A. Henning
机构
[1] University of Johannesburg,Department of Pure and Applied Mathematics
[2] University of Houston–Downtown,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Zero forcing sets; Total forcing sets; Claw-free; Cubic; Cycle cover; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A dynamic coloring of the vertices of a graph G starts with an initial subset S of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set S is called a forcing set (zero forcing set) of G if, by iteratively applying the forcing process, every vertex in G becomes colored. If the initial set S has the added property that it induces a subgraph of G without isolated vertices, then S is called a total forcing set in G. The total forcing number of G, denoted Ft(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_t(G)$$\end{document}, is the minimum cardinality of a total forcing set in G. We prove that if G is a connected, claw-free, cubic graph of order n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 6$$\end{document}, then Ft(G)≤12n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_t(G) \le \frac{1}{2}n$$\end{document}, where a claw-free graph is a graph that does not contain K1,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,3}$$\end{document} as an induced subgraph. The graphs achieving equality in these bounds are characterized.
引用
收藏
页码:1371 / 1384
页数:13
相关论文
共 50 条
  • [41] A CHARACTERIZATION OF PM-COMPACT CLAW-FREE CUBIC GRAPHS
    Wang, Xiumei
    Shang, Weiping
    Lin, Yixun
    Carvalho, Marcelo H.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (02)
  • [42] Factors with Red-Blue Coloring of Claw-Free Graphs and Cubic Graphs
    Furuya, Michitaka
    Kano, Mikio
    GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [43] The *-closure for graphs and claw-free graphs
    Cada, Roman
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5585 - 5596
  • [44] Pancyclicity in claw-free graphs
    Gould, RJ
    Pfender, F
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 151 - 160
  • [45] Claw-free graphs - A survey
    Faudree, R
    Flandrin, E
    Ryjacek, Z
    DISCRETE MATHEMATICS, 1997, 164 (1-3) : 87 - 147
  • [46] -Connectivity of Claw-Free Graphs
    Huang, Ziwen
    Li, Xiangwen
    Ma, Jianqing
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 123 - 140
  • [47] Pancyclism in Claw-free Graphs
    陆玫
    俞正光
    Tsinghua Science and Technology, 1998, (04) : 1218 - 1220
  • [48] Triangles in claw-free graphs
    Wang, H
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 233 - 244
  • [49] Minimal claw-free graphs
    Dankelmann, P.
    Swart, Henda C.
    van den Berg, P.
    Goddard, W.
    Plummer, M. D.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (03) : 787 - 798
  • [50] FACTORS OF CLAW-FREE GRAPHS
    LONC, Z
    RYJACEK, Z
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (01) : 120 - 130