Total Forcing and Zero Forcing in Claw-Free Cubic Graphs

被引:0
|
作者
Randy Davila
Michael A. Henning
机构
[1] University of Johannesburg,Department of Pure and Applied Mathematics
[2] University of Houston–Downtown,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Zero forcing sets; Total forcing sets; Claw-free; Cubic; Cycle cover; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A dynamic coloring of the vertices of a graph G starts with an initial subset S of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set S is called a forcing set (zero forcing set) of G if, by iteratively applying the forcing process, every vertex in G becomes colored. If the initial set S has the added property that it induces a subgraph of G without isolated vertices, then S is called a total forcing set in G. The total forcing number of G, denoted Ft(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_t(G)$$\end{document}, is the minimum cardinality of a total forcing set in G. We prove that if G is a connected, claw-free, cubic graph of order n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 6$$\end{document}, then Ft(G)≤12n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_t(G) \le \frac{1}{2}n$$\end{document}, where a claw-free graph is a graph that does not contain K1,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,3}$$\end{document} as an induced subgraph. The graphs achieving equality in these bounds are characterized.
引用
收藏
页码:1371 / 1384
页数:13
相关论文
共 50 条
  • [31] Total restrained domination in claw-free graphs
    Hongxing Jiang
    Liying Kang
    Journal of Combinatorial Optimization, 2010, 19 : 60 - 68
  • [32] Upper total domination in claw-free graphs
    Favaron, O
    Henning, MA
    JOURNAL OF GRAPH THEORY, 2003, 44 (02) : 148 - 158
  • [33] Paired-domination in claw-free cubic graphs
    Favaron, O
    Henning, MA
    GRAPHS AND COMBINATORICS, 2004, 20 (04) : 447 - 456
  • [34] Total restrained domination in claw-free graphs
    Jiang, Hongxing
    Kang, Liying
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2010, 19 (01) : 60 - 68
  • [35] Total Coloring of Claw-Free Planar Graphs
    Liang, Zuosong
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 771 - 777
  • [36] Total forcing versus total domination in cubic graphs
    Dayila, Randy
    Henning, Michael A.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 354 : 385 - 395
  • [37] Factors with Red–Blue Coloring of Claw-Free Graphs and Cubic Graphs
    Michitaka Furuya
    Mikio Kano
    Graphs and Combinatorics, 2023, 39
  • [38] On a conjecture on total domination in claw-free cubic graphs: proof and new upper bound
    Lichiardopol, Nicolas
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 51 : 7 - 28
  • [39] A note on 2-bisections of claw-free cubic graphs
    Abreu, Marien
    Goedgebeur, Jan
    Labbate, Domenico
    Mazzuoccolo, Giuseppe
    DISCRETE APPLIED MATHEMATICS, 2018, 244 : 214 - 217
  • [40] Maximizing the number of independent sets in claw-free cubic graphs
    Xiao, Junyi
    Tu, Jianhua
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 444