Total Forcing and Zero Forcing in Claw-Free Cubic Graphs

被引:0
|
作者
Randy Davila
Michael A. Henning
机构
[1] University of Johannesburg,Department of Pure and Applied Mathematics
[2] University of Houston–Downtown,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Zero forcing sets; Total forcing sets; Claw-free; Cubic; Cycle cover; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A dynamic coloring of the vertices of a graph G starts with an initial subset S of colored vertices, with all remaining vertices being non-colored. At each discrete time interval, a colored vertex with exactly one non-colored neighbor forces this non-colored neighbor to be colored. The initial set S is called a forcing set (zero forcing set) of G if, by iteratively applying the forcing process, every vertex in G becomes colored. If the initial set S has the added property that it induces a subgraph of G without isolated vertices, then S is called a total forcing set in G. The total forcing number of G, denoted Ft(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_t(G)$$\end{document}, is the minimum cardinality of a total forcing set in G. We prove that if G is a connected, claw-free, cubic graph of order n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 6$$\end{document}, then Ft(G)≤12n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_t(G) \le \frac{1}{2}n$$\end{document}, where a claw-free graph is a graph that does not contain K1,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,3}$$\end{document} as an induced subgraph. The graphs achieving equality in these bounds are characterized.
引用
收藏
页码:1371 / 1384
页数:13
相关论文
共 50 条
  • [1] Total Forcing and Zero Forcing in Claw-Free Cubic Graphs
    Davila, Randy
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1371 - 1384
  • [2] Zero Forcing in Claw-Free Cubic Graphs
    Davila, Randy
    Henning, Michael A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 673 - 688
  • [3] Zero Forcing in Claw-Free Cubic Graphs
    Randy Davila
    Michael A. Henning
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 673 - 688
  • [4] The zero forcing number of claw-free cubic graphs
    He, Mengya
    Li, Huixian
    Song, Ning
    Ji, Shengjin
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 321 - 330
  • [5] SEMITOTAL FORCING IN CLAW-FREE CUBIC GRAPHS
    Liang, Yi-ping
    Chen, Jie
    Xu, Shou-jun
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1373 - 1393
  • [6] Loop Zero Forcing and Grundy Domination in Planar Graphs and Claw-Free Cubic Graphs
    Domat, Alex
    Kuenzel, Kirsti
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [7] Upper Total Domination in Claw-Free Cubic Graphs
    Ammar Babikir
    Michael A. Henning
    Graphs and Combinatorics, 2022, 38
  • [8] Upper Total Domination in Claw-Free Cubic Graphs
    Babikir, Ammar
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [9] Bounds on total domination in claw-free cubic graphs
    Favaron, Odile
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2008, 308 (16) : 3491 - 3507
  • [10] On a conjecture on total domination in claw-free cubic graphs
    Southey, Justin
    Henning, Michael A.
    DISCRETE MATHEMATICS, 2010, 310 (21) : 2984 - 2999