The Kapustin–Witten equations and nonabelian Hodge theory

被引:0
|
作者
Chih-Chung Liu
Steven Rayan
Yuuji Tanaka
机构
[1] National Cheng-Kung University,Department of Mathematics
[2] University of Saskatchewan,Centre for Quantum Topology and Its Applications (quanTA) and Department of Mathematics & Statistics
[3] Kyoto University,Department of Mathematics, Faculty of Science
来源
关键词
Kapustin–Witten theory; Nonabelian Hodge theory; -connection; Closed four-manifold; Higgs bundle; Flat bundle; Harmonic bundle; Hermitian-Yang–Mills metric; Moduli space; Kähler geometry; 14J60; 53C07; 14D21;
D O I
暂无
中图分类号
学科分类号
摘要
Arising from a topological twist of N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {N}}=4$$\end{document} super Yang–Mills theory are the Kapustin–Witten equations, a family of gauge-theoretic equations on a four-manifold parametrised by t∈P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {P}}^1$$\end{document}. The parameter corresponds to a linear combination of two super charges in the twist. When t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document} and the four-manifold is a compact Kähler surface, the equations become the Simpson equations, which was originally studied by Hitchin on a compact Riemann surface, as demonstrated independently in works of Nakajima and the third-named author. At the same time, there is a notion of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-connection in the nonabelian Hodge theory of Donaldson–Corlette–Hitchin–Simpson in which λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is also valued in P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1$$\end{document}. Varying λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} interpolates between the moduli space of semistable Higgs sheaves with vanishing Chern classes on a smooth projective variety (at λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document}) and the moduli space of semisimple local systems on the same variety (at λ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1$$\end{document}) in the twistor space. In this article, we utilise the correspondence furnished by nonabelian Hodge theory to describe a relation between the moduli spaces of solutions to the equations by Kapustin and Witten at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document} and t∈R\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in {{\mathbb {R}}} \,{\setminus }\, \{ 0 \}$$\end{document} on a smooth, compact Kähler surface. We then provide supporting evidence for a more general form of this relation on a smooth, closed four-manifold by computing its expected dimension of the moduli space for each of t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document} and t∈R\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in {{\mathbb {R}}} \,{\setminus }\, \{ 0 \}$$\end{document}.
引用
收藏
页码:23 / 41
页数:18
相关论文
共 50 条
  • [31] Universal Equations for Higher Genus Gromov–Witten Invariants from Hodge Integrals
    Felix Janda
    Xin Wang
    Communications in Mathematical Physics, 2024, 405
  • [32] Diagrams for nonabelian Hodge spaces on the affine line
    Boalch, Philip
    Yamakawa, Daisuke
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (01) : 59 - 65
  • [33] Universal Equations for Higher Genus Gromov-Witten Invariants from Hodge Integrals
    Janda, Felix
    Wang, Xin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [34] A cohomological nonabelian Hodge theorem in positive characteristic
    Cataldo, Mark Andrea de
    Zhang, Siqing
    ALGEBRAIC GEOMETRY, 2022, 9 (05): : 606 - 632
  • [35] WDVV equations and Seiberg-Witten theory
    Mironov, A
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 103 - 123
  • [36] The WDVV Equations in Pure Seiberg–Witten Theory
    L. K. Hoevenaars
    Acta Applicandae Mathematica, 2005, 86 : 49 - 102
  • [37] FROM THE HITCHIN SECTION TO OPERS THROUGH NONABELIAN HODGE
    Dumitrescu, Olivia
    Fredrickson, Laura
    Kydonakis, Georgios
    Mazzeo, Rafe
    Mulase, Motohico
    Neitzke, Andrew
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 117 (02) : 223 - 253
  • [38] Towards Noncommutative Topological Quantum Field Theory: Tangential Hodge-Witten cohomology
    Zois, I. P.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [39] Gromov-witten invariants for abelian and nonabelian quotients
    Bertram, Aaron
    Ciocan-Fontanine, Ionut
    Kim, Bumsig
    JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (02) : 275 - 294
  • [40] Witten's nonabelian localization for noncompact Hamiltonian spaces
    Sawin, Stephen F.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2007, 25 (02) : 191 - 206