The Kapustin–Witten equations and nonabelian Hodge theory

被引:0
|
作者
Chih-Chung Liu
Steven Rayan
Yuuji Tanaka
机构
[1] National Cheng-Kung University,Department of Mathematics
[2] University of Saskatchewan,Centre for Quantum Topology and Its Applications (quanTA) and Department of Mathematics & Statistics
[3] Kyoto University,Department of Mathematics, Faculty of Science
来源
关键词
Kapustin–Witten theory; Nonabelian Hodge theory; -connection; Closed four-manifold; Higgs bundle; Flat bundle; Harmonic bundle; Hermitian-Yang–Mills metric; Moduli space; Kähler geometry; 14J60; 53C07; 14D21;
D O I
暂无
中图分类号
学科分类号
摘要
Arising from a topological twist of N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {N}}=4$$\end{document} super Yang–Mills theory are the Kapustin–Witten equations, a family of gauge-theoretic equations on a four-manifold parametrised by t∈P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {P}}^1$$\end{document}. The parameter corresponds to a linear combination of two super charges in the twist. When t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document} and the four-manifold is a compact Kähler surface, the equations become the Simpson equations, which was originally studied by Hitchin on a compact Riemann surface, as demonstrated independently in works of Nakajima and the third-named author. At the same time, there is a notion of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-connection in the nonabelian Hodge theory of Donaldson–Corlette–Hitchin–Simpson in which λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is also valued in P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^1$$\end{document}. Varying λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} interpolates between the moduli space of semistable Higgs sheaves with vanishing Chern classes on a smooth projective variety (at λ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =0$$\end{document}) and the moduli space of semisimple local systems on the same variety (at λ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1$$\end{document}) in the twistor space. In this article, we utilise the correspondence furnished by nonabelian Hodge theory to describe a relation between the moduli spaces of solutions to the equations by Kapustin and Witten at t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document} and t∈R\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in {{\mathbb {R}}} \,{\setminus }\, \{ 0 \}$$\end{document} on a smooth, compact Kähler surface. We then provide supporting evidence for a more general form of this relation on a smooth, closed four-manifold by computing its expected dimension of the moduli space for each of t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document} and t∈R\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in {{\mathbb {R}}} \,{\setminus }\, \{ 0 \}$$\end{document}.
引用
收藏
页码:23 / 41
页数:18
相关论文
共 50 条
  • [21] On logarithmic nonabelian Hodge theory of higher level in characteristic p
    Ohkawa, Sachio
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2015, 134 : 47 - 91
  • [22] Nonabelian Hodge theory in positive characteristic via exponential twisting
    Lan, Guitang
    Sheng, Mao
    Zuo, Kang
    MATHEMATICAL RESEARCH LETTERS, 2015, 22 (03) : 859 - 879
  • [23] Nonabelian Hodge theory for stacks and a stacky P=W conjecture
    Davison, Ben
    ADVANCES IN MATHEMATICS, 2023, 415
  • [24] A note on the characteristic p nonabelian Hodge theory in the geometric case
    Sheng, Mao
    Xin, He
    Zuo, Kang
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (01)
  • [25] A TWISTED NONABELIAN HODGE CORRESPONDENCE
    Garcia-Raboso, Alberto
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 107 (03) : 455 - 518
  • [26] On the Moyal deformation of Kapustin-Witten systems
    Cardona, S. A. H.
    Garcia-Compean, H.
    Martinez-Merino, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
  • [27] Witten-Hodge theory for manifolds with boundary and equivariant cohomology
    Al-Zamil, Qusay S. A.
    Montaldi, James
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (02) : 179 - 194
  • [28] Nonabelian Hodge theory for klt spaces and descent theorems for vector bundles
    Greb, Daniel
    Kebekus, Stefan
    Peternell, Thomas
    Taji, Behrouz
    COMPOSITIO MATHEMATICA, 2019, 155 (02) : 289 - 323
  • [29] Higher Deformation Quantization for Kapustin-Witten Theories
    Elliott, Chris
    Gwilliam, Owen
    Williams, Brian R.
    ANNALES HENRI POINCARE, 2024, 25 (12): : 5045 - 5112
  • [30] Morgan's mixed Hodge structures and nonabelian Hodge structures
    Kasuya, Hisashi
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (06) : 2655 - 2678