Improving Bacillus Altitudinis B-388 Genome Scaffolding Using Mate-Pair Next-Generation Sequencing

被引:1
|
作者
Ulyanova V. [1 ]
Shah Mahmud R. [1 ]
Malanin S. [1 ]
Vershinina V. [1 ]
Ilinskaya O. [1 ]
机构
[1] Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya str, Kazan
来源
Ulyanova, Vera (ulyanova.vera@gmail.com) | 1600年 / Springer Science and Business Media, LLC卷 / 07期
基金
俄罗斯基础研究基金会;
关键词
Antagonism; Bacillus altitudinis; Intestinal microbiota; Mate-pair next-generation sequencing; UV resistance;
D O I
10.1007/s12668-016-0304-z
中图分类号
学科分类号
摘要
Bacillus species, generally regarded as soil microorganisms, are present in human gastrointestinal tract (GIT) in quantities, which cannot be explained by their entrance with food only. They are capable of growing in GIT and interacting with intestinal microbiota and host organism by excretion of enzymes and low-molecular weight compounds, which exert digestion-facilitating, antagonistic, immunomodulating, antiviral, anticancer properties or mediate cell communication. For better understanding of its probiotic potential, we have sequenced genome of Bacillus altitudinis B-388 using mate-pair technology. It allowed us to improve quality of the genome sequence. The number of contigs decreased from 59 to 8. N50 contig length increased by four times. The number of identified genes raised from 3730 to 3774 (3645 proteins and 73 RNAs) with the reduction of frameshifted genes. The calculated size of B. altitudinis B-388 genome is 3,743,699 bp, with a G + C content of 41.17 mol%. Additional incomplete prophage sequence in genome of B. altitudinis B-388 was revealed. It was found that cryptic plasmid encodes SoxR, an oxidative stress response regulator. To date, the reported sequence is the most thorough presentation of B. altitudinis genome among four whole-genome sequences of this species deposited in GenBank. © 2016, Springer Science+Business Media New York.
引用
收藏
页码:85 / 87
页数:2
相关论文
共 50 条
  • [31] Cryptic complexity and disease candidate genes identified in de novo apparently balanced translocations using whole-genome mate-pair sequencing
    Aristidou, C.
    Mehrjouy, M. M.
    Bak, M.
    Theodosiou, A.
    Christophidou-Anastasiadou, V.
    Skordis, N.
    Tommerup, N.
    Sismani, C.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 612 - 612
  • [32] Improving Mutation Screening in Patients with Colorectal Cancer Predisposition Using Next-Generation Sequencing
    Rey, Jean-Marc
    Ducros, Vincent
    Pujol, Pascal
    Wang, Qing
    Buisine, Marie-Pierre
    Aissaoui, Hanaa
    Maudelonde, Thierry
    Olschwang, Sylviane
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2017, 19 (04): : 589 - 601
  • [33] Detection of Bacillus anthracis DNA in Complex Soil and Air Samples Using Next-Generation Sequencing
    Be, Nicholas A.
    Thissen, James B.
    Gardner, Shea N.
    McLoughlin, Kevin S.
    Fofanov, Viacheslav Y.
    Koshinsky, Heather
    Ellingson, Sally R.
    Brettin, Thomas S.
    Jackson, Paul J.
    Jaing, Crystal J.
    [J]. PLOS ONE, 2013, 8 (09):
  • [34] The complete mitochondrial genome of the king horseshoe bat (Rhinolophus rex) using next-generation sequencing and Sanger sequencing
    Shi, Huizhen
    Zhang, Shuyi
    Mao, Xiuguang
    [J]. MITOCHONDRIAL DNA PART A, 2016, 27 (06) : 4545 - 4546
  • [35] The complete mitochondrial genome of Porites harrisoni (Cnidaria: Scleractinia) obtained using next-generation sequencing
    Terraneo, Tullia Isotta
    Arrigoni, Roberto
    Benzoni, Francesca
    Forsman, Zac H.
    Berumen, Michael L.
    [J]. MITOCHONDRIAL DNA PART B-RESOURCES, 2018, 3 (01): : 286 - 287
  • [36] Developing molecular tools and insights into the Penstemon genome using genomic reduction and next-generation sequencing
    Dockter, Rhyan B.
    Elzinga, David B.
    Geary, Brad
    Maughan, P. Jeff
    Johnson, Leigh A.
    Tumbleson, Danika
    Franke, JanaLynn
    Dockter, Keri
    Stevens, Mikel R.
    [J]. BMC GENETICS, 2013, 14 : 1 - 34
  • [37] Genome-wide analysis of Chongqing native intersexual goats using next-generation sequencing
    E, Guang-xin
    Jin, Mei-Lan
    Zhao, Yong-Ju
    Li, Xiang-Long
    Li, Lan-Hui
    Yang, Bai-Gao
    Duan, Xing-Hai
    Huang, Yong-Fu
    [J]. 3 BIOTECH, 2019, 9 (03)
  • [38] Protocol for next-generation sequencing of the LSD virus genome using an amplicon-based approach
    Bhoyar, Rahul C.
    Jolly, Bani
    Vignesh, Harie
    Bhatt, Lenin
    Senthivel, Vigneshwar
    Israni, Ravi
    Scaria, Vinod
    Sivasubbu, Sridhar
    [J]. STAR PROTOCOLS, 2024, 5 (03):
  • [39] Mapping DNA Topoisomerase Binding and Cleavage Genome Wide Using Next-Generation Sequencing Techniques
    McKie, Shannon J.
    Maxwell, Anthony
    Neuman, Keir C.
    [J]. GENES, 2020, 11 (01)
  • [40] Developing molecular tools and insights into the Penstemon genome using genomic reduction and next-generation sequencing
    Rhyan B Dockter
    David B Elzinga
    Brad Geary
    P Jeff Maughan
    Leigh A Johnson
    Danika Tumbleson
    JanaLynn Franke
    Keri Dockter
    Mikel R Stevens
    [J]. BMC Genetics, 14