The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System

被引:0
|
作者
Shengbin Fu
Weiwei Wang
机构
[1] Fuzhou University,School of Mathematics and Statistics
[2] Center for Applied Mathematics of Fujian Province,undefined
[3] Key Laboratory of Operations Research and Cybernetics of Fujian Universities,undefined
关键词
Compressible Hall-magnetohydrodynamics system; Optimal temporal decay rates; Fixed point theorem; Pure energy methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium (ρ¯,0,B¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{\rho }},0,\bar{\textbf{B}})$$\end{document}, provided that the initial perturbation belonging to H3(R3)∩B2,∞-s(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^3({\mathbb {R}}^3) \cap B_{2, \infty }^{-s}({\mathbb {R}}^3)$$\end{document} for s∈(0,32]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,\frac{3}{2}]$$\end{document} is sufficiently small.
引用
收藏
相关论文
共 50 条