The Optimal Temporal Decay Rates for Compressible Hall-magnetohydrodynamics System

被引:0
|
作者
Shengbin Fu
Weiwei Wang
机构
[1] Fuzhou University,School of Mathematics and Statistics
[2] Center for Applied Mathematics of Fujian Province,undefined
[3] Key Laboratory of Operations Research and Cybernetics of Fujian Universities,undefined
关键词
Compressible Hall-magnetohydrodynamics system; Optimal temporal decay rates; Fixed point theorem; Pure energy methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are interested in the global well-posedness of the strong solutions to the Cauchy problem on the compressible magnetohydrodynamics system with Hall effect. Moreover, we establish the convergence rates of the above solutions trending towards the constant equilibrium (ρ¯,0,B¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{\rho }},0,\bar{\textbf{B}})$$\end{document}, provided that the initial perturbation belonging to H3(R3)∩B2,∞-s(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^3({\mathbb {R}}^3) \cap B_{2, \infty }^{-s}({\mathbb {R}}^3)$$\end{document} for s∈(0,32]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,\frac{3}{2}]$$\end{document} is sufficiently small.
引用
收藏
相关论文
共 50 条
  • [21] Well-posedness of Hall-magnetohydrodynamics system forced by Levy noise
    Yamazaki, Kazuo
    Mohan, Manil T.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2019, 7 (03): : 331 - 378
  • [22] Global Weak Solutions to the Density-Dependent Hall-Magnetohydrodynamics System
    Tan, Jin
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (04)
  • [23] Intermittency in Hall-magnetohydrodynamics with a strong guide field
    Rodriguez Imazio, P.
    Martin, L. N.
    Dmitruk, P.
    Mininni, P. D.
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [24] Global Weak Solutions to the Density-Dependent Hall-Magnetohydrodynamics System
    Jin Tan
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [25] Compressible turbulence in Hall Magnetohydrodynamics
    Servidio, S.
    Carbone, V.
    Primavera, L.
    Veltri, P.
    Stasiewicz, K.
    PLANETARY AND SPACE SCIENCE, 2007, 55 (15) : 2239 - 2243
  • [26] Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability
    Ahedo, Eduardo
    Ramos, Jesus J.
    PHYSICS OF PLASMAS, 2012, 19 (07)
  • [27] A Regularity Criterion for the Density-Dependent Hall-Magnetohydrodynamics
    Fan, Jishan
    Alsaedi, Ahmed
    Fukumoto, Yasuhide
    Hayat, Tasawar
    Zhou, Yong
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (03): : 277 - 284
  • [28] GLOBAL EXISTENCE AND OPTIMAL DECAY RATES OF SOLUTIONS FOR COMPRESSIBLE HALL-MHD EQUATIONS
    Gao, Jincheng
    Yao, Zheng-An
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (06) : 3077 - 3106
  • [29] Relation between Hall-magnetohydrodynamics and the kinetic Alfven wave
    Hirose, A
    Ito, A
    Mahajan, SM
    Ohsaki, S
    PHYSICS LETTERS A, 2004, 330 (06) : 474 - 480
  • [30] Global solutions for the incompressible Hall-magnetohydrodynamics system around constant equilibrium states
    Fujii, Mikihiro
    Nakasato, Ryosuke
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (02)