Further Results on the Generalized Drazin Inverse of Block Matrices in Banach Algebras

被引:0
|
作者
Milica Z. Kolundžija
Dijana Mosić
Dragan S. Djordjević
机构
[1] University of Niš,Faculty of Sciences and Mathematics
关键词
Generalized Drazin inverse; Schur complement; Block matrix; 46H05; 47A05; 15A09;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this paper is to derive formulae for the generalized Drazin inverse of a block matrix in a Banach algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document} under different conditions. Let x=abcd∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=\left[ \begin{array}{c@{\quad }c} a&{}b\\ c&{}d\end{array}\right] \in \mathcal{A}$$\end{document} relative to the idempotent p∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in \mathcal{A}$$\end{document} and a∈pAp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in p\mathcal{A}p$$\end{document} be generalized Drazin invertible. The formulae for the generalized Drazin inverse are obtained under the more general case that the generalized Schur complement s=d-cadb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=d-ca^db$$\end{document} is generalized Drazin invertible, which covers the cases that s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} is Drazin invertible, s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} is group invertible, or s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} is equal to zero. Thus, recent results on the Drazin inverse of block matrices and block-operator matrices are extended to a more general setting.
引用
收藏
页码:483 / 498
页数:15
相关论文
共 50 条