Some results on the generalized Drazin inverse of operator matrices

被引:29
|
作者
Deng, Chunyuan [2 ]
Cvetkovic-Ilic, Dragana S. [3 ]
Wei, Yimin [1 ,4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Univ Nis, Dept Math, Fac Sci & Math, Nish 18000, Serbia
[4] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2010年 / 58卷 / 04期
基金
中国国家自然科学基金;
关键词
generalized Drazin inverse; Schur complement; block matrix; REPRESENTATIONS; CONTINUITY; INDEX;
D O I
10.1080/03081080902722642
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Drazin inverse M-d of a 2 x 2 operator matrix [GRAPHICS] is considered, where A is an element of B(X) and D is an element of B(Y) are generalized Drazin invertible. Expressions for the generalized Drazin inverse M-d of operator matrix M in terms of the individual blocks A, B, C, D, A(d) and D-d are derived under some conditions.
引用
收藏
页码:503 / 521
页数:19
相关论文
共 50 条
  • [1] The generalized Drazin inverse of operator matrices
    Guo, Li
    Zou, Honglin
    Chen, Jianlong
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03): : 1134 - 1149
  • [2] On Drazin inverse of operator matrices
    Cvetkovic, Aleksandar S.
    Milovanovic, Gradimir V.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) : 331 - 335
  • [3] Representations for generalized Drazin inverse of operator matrices over a Banach space
    Zhang, Daochang
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (02) : 428 - 437
  • [4] On Some Previous Results for the Drazin Inverse of Block Matrices
    Visnjic, Jelena
    [J]. FILOMAT, 2016, 30 (01) : 125 - 130
  • [5] Generalized Drazin spectrum of operator matrices
    Shi-fang Zhang
    Huai-jie Zhong
    Li-qiong Lin
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 162 - 170
  • [6] Generalized Drazin Invertibility of Operator Matrices
    Bahloul, Aymen
    Walha, Ines
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (16) : 1836 - 1847
  • [7] Generalized Drazin invertibility of operator matrices
    Cvetkovic, Milos D.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 692 - 703
  • [8] Generalized Drazin spectrum of operator matrices
    Zhang Shi-fang
    Zhong Huai-jie
    Lin Li-qiong
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (02) : 162 - 170
  • [9] Generalized Drazin spectrum of operator matrices
    ZHANG Shi-fang
    ZHONG Huai-jie
    LIN Li-qiong
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2014, (02) : 162 - 170
  • [10] Generalized Drazin spectrum of operator matrices
    ZHANG Shifang
    ZHONG Huaijie
    LIN Liqiong
    [J]. AppliedMathematics:AJournalofChineseUniversities(SeriesB)., 2014, 29 (02) - 170