Systematic review and meta-analysis of performance of wearable artificial intelligence in detecting and predicting depression

被引:0
|
作者
Alaa Abd-Alrazaq
Rawan AlSaad
Farag Shuweihdi
Arfan Ahmed
Sarah Aziz
Javaid Sheikh
机构
[1] Weill Cornell Medicine-Qatar,AI Center for Precision Health
[2] University of Doha for Science and Technology,College of Computing and Information Technology
[3] University of Leeds,School of Medicine, Leeds Institute of Health Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given the limitations of traditional approaches, wearable artificial intelligence (AI) is one of the technologies that have been exploited to detect or predict depression. The current review aimed at examining the performance of wearable AI in detecting and predicting depression. The search sources in this systematic review were 8 electronic databases. Study selection, data extraction, and risk of bias assessment were carried out by two reviewers independently. The extracted results were synthesized narratively and statistically. Of the 1314 citations retrieved from the databases, 54 studies were included in this review. The pooled mean of the highest accuracy, sensitivity, specificity, and root mean square error (RMSE) was 0.89, 0.87, 0.93, and 4.55, respectively. The pooled mean of lowest accuracy, sensitivity, specificity, and RMSE was 0.70, 0.61, 0.73, and 3.76, respectively. Subgroup analyses revealed that there is a statistically significant difference in the highest accuracy, lowest accuracy, highest sensitivity, highest specificity, and lowest specificity between algorithms, and there is a statistically significant difference in the lowest sensitivity and lowest specificity between wearable devices. Wearable AI is a promising tool for depression detection and prediction although it is in its infancy and not ready for use in clinical practice. Until further research improve its performance, wearable AI should be used in conjunction with other methods for diagnosing and predicting depression. Further studies are needed to examine the performance of wearable AI based on a combination of wearable device data and neuroimaging data and to distinguish patients with depression from those with other diseases.
引用
收藏
相关论文
共 50 条
  • [41] Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis
    Garcia-Martinez, Inmaculada
    Fernandez-Batanero, Jose Maria
    Fernandez-Cerero, Jose
    Leon, Samuel P.
    JOURNAL OF NEW APPROACHES IN EDUCATIONAL RESEARCH, 2023, 12 (01) : 171 - 197
  • [42] Diagnostic performance of artificial intelligence in detection of renal cell carcinoma: a systematic review and meta-analysis
    Gouravani, Mahdi
    Farahani, Mohammad Shahrabi
    Salehi, Mohammad Amin
    Shojaei, Shayan
    Mirakhori, Sina
    Harandi, Hamid
    Mohammadi, Soheil
    Saleh, Ramy R.
    BMC CANCER, 2025, 25 (01)
  • [43] Use of artificial intelligence improves colonoscopy performance in adenoma detection: a systematic review and meta-analysis
    Makar, Jonathan
    Abdelmalak, Jonathan
    Con, Danny
    Hafeez, Bilal
    Garg, Mayur
    GASTROINTESTINAL ENDOSCOPY, 2025, 101 (01)
  • [44] Performance of artificial intelligence using oral and maxillofacial CBCT images: A systematic review and meta-analysis
    Badr, F. F.
    Jadu, F. M.
    NIGERIAN JOURNAL OF CLINICAL PRACTICE, 2022, 25 (11) : 1918 - 1927
  • [45] Artificial Intelligence in Acute Stroke Care: A Systematic Review Meta-Analysis
    Dadoo, Sonali
    Zebrowitz, Elan
    Brabant, Paige
    Uddin, Anaz
    Aifuwa, Esewi
    Maraia, Danielle
    Etienne, Mill
    Yakubov, Neriy
    Babu, Myoungmee
    Babu, Benson
    ANNALS OF NEUROLOGY, 2024, 96 : S172 - S173
  • [46] Application of artificial intelligence in laryngeal lesions: a systematic review and meta-analysis
    Marrero-Gonzalez, Alejandro R.
    Diemer, Tanner J.
    Nguyen, Shaun A.
    Camilon, Terence J. M.
    Meenan, Kirsten
    O'Rourke, Ashli
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2025, 282 (03) : 1543 - 1555
  • [47] SYSTEMATIC REVIEW WITH META-ANALYSIS: ARTIFICIAL INTELLIGENCE IN THE DIAGNOSIS OF ESOPHAGEAL DISEASES
    Visaggi, P.
    Barberio, B.
    Gregori, D.
    Azzolina, D.
    Martinato, M.
    Hassan, C.
    Sharma, P.
    Savarino, E.
    De Bortoli, N.
    DIGESTIVE AND LIVER DISEASE, 2022, 54 : S80 - S81
  • [48] Artificial intelligence for MRI stroke detection: a systematic review and meta-analysis
    Bojsen, Jonas Asgaard
    Elhakim, Mohammad Talal
    Graumann, Ole
    Gaist, David
    Nielsen, Mads
    Harbo, Frederik Severin Grae
    Krag, Christian Hedeager
    Sagar, Malini Vendela
    Kruuse, Christina
    Boesen, Mikael Ploug
    Rasmussen, Benjamin Schnack Brandt
    INSIGHTS INTO IMAGING, 2024, 15 (01):
  • [49] Artificial Intelligence in Anterior Chamber Evaluation: A Systematic Review and Meta-Analysis
    Olyntho Jr, Marco A. C.
    Jorge, Carlos A. C.
    Castanha, Everton B.
    Goncalves, Andreia N.
    Silva, Barbara L.
    Nogueira, Bernardo V.
    Lima, Geovana M.
    Gracitelli, Carolina P. B.
    Tatham, Andrew J.
    JOURNAL OF GLAUCOMA, 2024, 33 (09) : 658 - 664
  • [50] Systematic review with meta-analysis: artificial intelligence in the diagnosis of oesophageal diseases
    Visaggi, Pierfrancesco
    Barberio, Brigida
    Gregori, Dario
    Azzolina, Danila
    Martinato, Matteo
    Hassan, Cesare
    Sharma, Prateek
    Savarino, Edoardo
    Bortoli, Nicola
    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2022, 55 (05) : 528 - 540