An open 4-manifold having no instanton

被引:0
|
作者
Masaki Tsukamoto
机构
[1] Kyoto University,Department of Mathematics, Faculty of Science
来源
关键词
Yang–Mills theory; Instanton; Open 4-manifold; Infinite connected sum; 53C07;
D O I
暂无
中图分类号
学科分类号
摘要
Taubes proved that all compact oriented Riemannian 4-manifolds admit non-flat instantons. We show that there exists a non-compact oriented complete Riemannian 4-manifold having no non-flat instanton.
引用
收藏
页码:251 / 286
页数:35
相关论文
共 50 条
  • [21] THE ALGEBRAIC TOPOLOGY OF 4-MANIFOLD MULTISECTIONS
    Moussard, Delphine
    Schirmer, Trenton
    PACIFIC JOURNAL OF MATHEMATICS, 2023, 327 (01) : 139 - 166
  • [22] HOMOLOGY OF A 4-MANIFOLD WITH A GIVEN BOUNDARY
    KNOBLAUCH, T
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06): : A604 - A604
  • [23] The suspension of a 4-manifold and its applications
    So, Tseleung
    Theriault, Stephen
    ISRAEL JOURNAL OF MATHEMATICS, 2025, 265 (01) : 115 - 151
  • [24] Critical Metrics of the Schouten Functional on a 4-manifold
    Zhang, L.F.
    IAENG International Journal of Computer Science, 2023, 50 (01)
  • [25] The G2 sphere of a 4-manifold
    R. Albuquerque
    I. M. C. Salavessa
    Monatshefte für Mathematik, 2009, 158 : 335 - 348
  • [26] THE SPACE OF HYPERKAHLER METRICS ON A 4-MANIFOLD WITH BOUNDARY
    Fine, Joel
    Lotay, Jason D.
    Singer, Michael
    FORUM OF MATHEMATICS SIGMA, 2017, 5
  • [27] ON A 4-MANIFOLD HOMOLOGY EQUIVALENT TO A BOUQUET OF SURFACES
    KAWAUCHI, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 262 (01) : 95 - 112
  • [28] Compactification of a class of conformally flat 4-manifold
    Chang, SYA
    Qing, J
    Yang, PC
    INVENTIONES MATHEMATICAE, 2000, 142 (01) : 65 - 93
  • [29] The G2 sphere of a 4-manifold
    Albuquerque, R.
    Salavessa, I.
    MONATSHEFTE FUR MATHEMATIK, 2010, 160 (01): : 109 - 110
  • [30] Introduction of a Riemannian geometry on a triangulable 4-manifold
    Cairns, SS
    ANNALS OF MATHEMATICS, 1944, 45 : 218 - 219