Compactification of a class of conformally flat 4-manifold

被引:57
|
作者
Chang, SYA [1 ]
Qing, J
Yang, PC
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[4] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
D O I
10.1007/s002220000083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize Huber's result on complete surfaces of finite total curvature. For complete locally conformally flat 4-manifolds of positive scalar curvature with Q curvature integrable, where Q is a variant of the Chern-Gauss-Bonnet integrand; we first derive the Cohn-Vossen inequality. We then establish finiteness of the topology. This allows us to provide conformal compactification of such manifolds.
引用
收藏
页码:65 / 93
页数:29
相关论文
共 50 条