Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians

被引:0
|
作者
Michael Ehrig
Catharina Stroppel
机构
[1] Universität Bonn,Mathematisches Institut
[2] Universität Bonn,Mathematisches Institut
来源
Selecta Mathematica | 2016年 / 22卷
关键词
05E10; 14M15; 17B10; 17B45; 55N91; 20C08;
D O I
暂无
中图分类号
学科分类号
摘要
For each integer k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 4$$\end{document}, we describe diagrammatically a positively graded Koszul algebra Dk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}_k$$\end{document} such that the category of finite dimensional Dk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}_k$$\end{document}-modules is equivalent to the category of perverse sheaves on the isotropic Grassmannian of type Dk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{D}_k$$\end{document} or Bk-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{B}_{k-1}$$\end{document}, constructible with respect to the Schubert stratification. The algebra is obtained by a (non-trivial) “folding” procedure from a generalized Khovanov arc algebra. Properties such as graded cellularity and explicit closed formulas for graded decomposition numbers are established by elementary tools.
引用
收藏
页码:1455 / 1536
页数:81
相关论文
共 50 条