Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians

被引:0
|
作者
Michael Ehrig
Catharina Stroppel
机构
[1] Universität Bonn,Mathematisches Institut
[2] Universität Bonn,Mathematisches Institut
来源
Selecta Mathematica | 2016年 / 22卷
关键词
05E10; 14M15; 17B10; 17B45; 55N91; 20C08;
D O I
暂无
中图分类号
学科分类号
摘要
For each integer k≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 4$$\end{document}, we describe diagrammatically a positively graded Koszul algebra Dk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}_k$$\end{document} such that the category of finite dimensional Dk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}_k$$\end{document}-modules is equivalent to the category of perverse sheaves on the isotropic Grassmannian of type Dk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{D}_k$$\end{document} or Bk-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{B}_{k-1}$$\end{document}, constructible with respect to the Schubert stratification. The algebra is obtained by a (non-trivial) “folding” procedure from a generalized Khovanov arc algebra. Properties such as graded cellularity and explicit closed formulas for graded decomposition numbers are established by elementary tools.
引用
收藏
页码:1455 / 1536
页数:81
相关论文
共 50 条
  • [31] PERVERSE SHEAVES WITH RESPECT TO A CUSP
    GRANGER, M
    MAISONOBE, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (12): : 567 - 570
  • [32] Perverse sheaves on a triangulated space
    Polishchuk, A
    [J]. MATHEMATICAL RESEARCH LETTERS, 1997, 4 (2-3) : 191 - 199
  • [33] Explicit models for perverse sheaves
    Rodríguez, MG
    Macarro, LN
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (02) : 425 - 454
  • [34] DECOMPOSITION NUMBERS FOR PERVERSE SHEAVES
    Juteau, Daniel
    [J]. ANNALES DE L INSTITUT FOURIER, 2009, 59 (03) : 1177 - 1229
  • [35] WHEN ARE THERE ENOUGH PROJECTIVE PERVERSE SHEAVES?
    Cipriani, Alessio
    Woolf, Jon
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2022, 64 (01) : 185 - 196
  • [36] Nonsplit Hecke algebras and perverse sheaves
    Lusztig, G.
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (04): : 1953 - 1986
  • [37] Nonsplit Hecke algebras and perverse sheaves
    G. Lusztig
    [J]. Selecta Mathematica, 2016, 22 : 1953 - 1986
  • [38] On residual categories for Grassmannians
    Kuznetsov, Alexander
    Smirnov, Maxim
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 120 (05) : 617 - 641
  • [39] On the length of perverse sheaves on hyperplane arrangements
    Nero Budur
    Yongqiang Liu
    [J]. European Journal of Mathematics, 2020, 6 : 681 - 712
  • [40] Exact functors on perverse coherent sheaves
    Koppensteiner, Clemens
    [J]. COMPOSITIO MATHEMATICA, 2015, 151 (09) : 1688 - 1696