Perverse sheaves on real loop Grassmannians

被引:0
|
作者
David Nadler
机构
[1] University of Chicago,Department of Mathematics
来源
Inventiones mathematicae | 2005年 / 159卷
关键词
Root System; Algebraic Group; Interesting Family; Decomposition Theorem; Real Form;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to identify a certain tensor category of perverse sheaves on the loop Grassmannian Grℝ of a real form Gℝ of a connected reductive complex algebraic group G with the category of finite-dimensional representations of a connected reductive complex algebraic subgroup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\check{H}$\end{document} of the dual group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\check{G}$\end{document}. The root system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\check{H}$\end{document} is closely related to the restricted root system of Gℝ. The fact that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\check{H}$\end{document} is reductive implies that an interesting family of real algebraic maps satisfies the conclusion of the Decomposition Theorem of Beilinson-Bernstein-Deligne.
引用
收藏
页码:1 / 73
页数:72
相关论文
共 50 条