A Cubic Kernel for Feedback Vertex Set and Loop Cutset

被引:0
|
作者
Hans L. Bodlaender
Thomas C. van Dijk
机构
[1] Utrecht University,Department of Information and Computing Sciences
来源
关键词
Graphs; Algorithms; Kernelization algorithms; Preprocessing; Data reduction; Feedback vertex set; Loop cutset; Polynomial kernels; Fixed parameter tractability;
D O I
暂无
中图分类号
学科分类号
摘要
The Feedback Vertex Set problem on unweighted, undirected graphs is considered. Improving upon a result by Burrage et al. (Proceedings 2nd International Workshop on Parameterized and Exact Computation, pp. 192–202, 2006), we show that this problem has a kernel with O(k3) vertices, i.e., there is a polynomial time algorithm, that given a graph G and an integer k, finds a graph G′ with O(k3) vertices and integer k′≤k, such that G has a feedback vertex set of size at most k, if and only if G′ has a feedback vertex set of size at most k′. Moreover, the algorithm can be made constructive: if the reduced instance G′ has a feedback vertex set of size k′, then we can easily transform a minimum size feedback vertex set of G′ into a minimum size feedback vertex set of G. This kernelization algorithm can be used as the first step of an FPT algorithm for Feedback Vertex Set, but also as a preprocessing heuristic for Feedback Vertex Set.
引用
收藏
页码:566 / 597
页数:31
相关论文
共 50 条
  • [31] On Parameterized Independent Feedback Vertex Set
    Misra, Neeldhara
    Philip, Geevarghese
    Raman, Venkatesh
    Saurabh, Saket
    THEORETICAL COMPUTER SCIENCE, 2012, 461 : 65 - 75
  • [32] A Cubic-Vertex Kernel for Flip Consensus Tree
    Komusiewicz, Christian
    Uhlmann, Johannes
    ALGORITHMICA, 2014, 68 (01) : 81 - 108
  • [33] A Cubic Vertex-Kernel for Trivially Perfect Editing
    Maël Dumas
    Anthony Perez
    Ioan Todinca
    Algorithmica, 2023, 85 : 1091 - 1110
  • [34] FEEDBACK VERTEX SET ON PLANAR GRAPHS
    Chen, Hong-Bin
    Fu, Hung-Lin
    Shih, Chie-Huai
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2077 - 2082
  • [35] Parameterized algorithms for feedback vertex set
    Kanj, I
    Pelsmajer, M
    Schaefer, M
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 235 - 247
  • [36] PARALLELISM AND THE FEEDBACK VERTEX SET PROBLEM
    BOVET, DP
    DEAGOSTINO, S
    PETRESCHI, R
    INFORMATION PROCESSING LETTERS, 1988, 28 (02) : 81 - 85
  • [37] Feedback Vertex Set in Mixed Graphs
    Bonsma, Paul
    Lokshtanov, Daniel
    ALGORITHMS AND DATA STRUCTURES, 2011, 6844 : 122 - +
  • [38] Parameter Ecology for Feedback Vertex Set
    Jansen, Bart M. P.
    Raman, Venkatesh
    Vatshelle, Martin
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (04) : 387 - 409
  • [39] Parameter Ecology for Feedback Vertex Set
    Bart M.P.Jansen
    Venkatesh Raman
    Martin Vatshelle
    Tsinghua Science and Technology, 2014, 19 (04) : 387 - 409
  • [40] The price of connectivity for feedback vertex set
    Belmonte, Remy
    van't Hof, Pim
    Kaminski, Marcin
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 132 - 143