A Cubic Kernel for Feedback Vertex Set and Loop Cutset

被引:0
|
作者
Hans L. Bodlaender
Thomas C. van Dijk
机构
[1] Utrecht University,Department of Information and Computing Sciences
来源
关键词
Graphs; Algorithms; Kernelization algorithms; Preprocessing; Data reduction; Feedback vertex set; Loop cutset; Polynomial kernels; Fixed parameter tractability;
D O I
暂无
中图分类号
学科分类号
摘要
The Feedback Vertex Set problem on unweighted, undirected graphs is considered. Improving upon a result by Burrage et al. (Proceedings 2nd International Workshop on Parameterized and Exact Computation, pp. 192–202, 2006), we show that this problem has a kernel with O(k3) vertices, i.e., there is a polynomial time algorithm, that given a graph G and an integer k, finds a graph G′ with O(k3) vertices and integer k′≤k, such that G has a feedback vertex set of size at most k, if and only if G′ has a feedback vertex set of size at most k′. Moreover, the algorithm can be made constructive: if the reduced instance G′ has a feedback vertex set of size k′, then we can easily transform a minimum size feedback vertex set of G′ into a minimum size feedback vertex set of G. This kernelization algorithm can be used as the first step of an FPT algorithm for Feedback Vertex Set, but also as a preprocessing heuristic for Feedback Vertex Set.
引用
收藏
页码:566 / 597
页数:31
相关论文
共 50 条
  • [21] A New Linear Kernel for Undirected Planar Feedback Vertex Set: Smaller and Simpler
    Xiao, Mingyu
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, AAIM 2014, 2014, 8546 : 288 - 298
  • [22] Long-loop feedback vertex set and dismantling on bipartite factor graphs
    Li, Tianyi
    Zhang, Pan
    Zhou, Hai-Jun
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [23] Feedback vertex set in hypercubes
    Focardi, R
    Luccio, FL
    Peleg, D
    INFORMATION PROCESSING LETTERS, 2000, 76 (1-2) : 1 - 5
  • [24] Feedback vertex sets in cubic multigraphs
    Gentner, Michael
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2179 - 2185
  • [25] Wannabe Bounded Treewidth Graphs Admit a Polynomial Kernel for Directed Feedback Vertex Set
    Lokshtanov, Daniel
    Ramanujan, Maadapuzhi-sridharan
    Saurabh, Saket
    Sharma, Roohani
    Zehavi, Meirav
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2025, 17 (01)
  • [26] A 13k-kernel for planar feedback vertex set via region decomposition
    Bonamy, Marthe
    Kowalik, Lukasz
    THEORETICAL COMPUTER SCIENCE, 2016, 645 : 25 - 40
  • [27] A 14k-Kernel for Planar Feedback Vertex Set via Region Decomposition
    Bonamy, Marthe
    Kowalik, Lukasz
    PARAMETERIZED AND EXACT COMPUTATION, IPEC 2014, 2014, 8894 : 97 - 109
  • [28] A Cubic Vertex-Kernel for TRIVIALLY PERFECT EDITING
    Dumas, Mael
    Perez, Anthony
    Todinca, Ioan
    ALGORITHMICA, 2023, 85 (04) : 1091 - 1110
  • [29] A Cubic-Vertex Kernel for Flip Consensus Tree
    Christian Komusiewicz
    Johannes Uhlmann
    Algorithmica, 2014, 68 : 81 - 108
  • [30] Faster deterministic FEEDBACK VERTEX SET
    Kociumaka, Tomasz
    Pilipczuk, Marcin
    INFORMATION PROCESSING LETTERS, 2014, 114 (10) : 556 - 560