The Second Nonlinear Mixed Lie Triple Derivations on Finite Von Neumann Algebras

被引:0
|
作者
Xingpeng Zhao
Xiaochun Fang
机构
[1] Tongji University,School of mathematical sciences
来源
Bulletin of the Iranian Mathematical Society | 2021年 / 47卷
关键词
The second mixed Lie triple derivation; Local and 2-local; Von Neumann algebra; 16W25; 46L57; 47B49;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} be a finite von Neumann algebra with no central summands of type I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}_{1}$$\end{document}. Suppose that L:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L: {\mathcal {M}}\rightarrow {\mathcal {M}}$$\end{document} is the second nonlinear mixed Lie triple derivation. Then L is an additive ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation. We also show that each local and 2-local second Lie triple derivation on finite von Neumann algebras with no central summands of type I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}_{1}$$\end{document} is a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation. Besides, each local and 2-local second Lie triple derivation on factor von Neumann algebras M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} with dimM>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}>1$$\end{document} is also a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation.
引用
收藏
页码:237 / 254
页数:17
相关论文
共 50 条
  • [41] Nonlinear 2-local Lie n-derivations of von Neumann algebras
    Zhao, Xingpeng
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1457 - 1465
  • [42] On Mixed Nonlinear Skew Lie (Jordan) Products on Von Neumann Algebras
    Alhazmi, Husain
    Raza, Mohd Arif
    Khan, Abdul Nadim
    AL-Sobhi, Tahani
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [43] Characterization of Nonlinear Mixed Bi-Skew Lie Triple Derivations on ∗-Algebras
    Alsuraiheed, Turki
    Nisar, Junaid
    Rehman, Nadeem ur
    MATHEMATICS, 2024, 12 (09)
  • [44] Nonlinear Lie triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras
    Chen, Zhengxin
    Xiao, Zhankui
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (06): : 645 - 656
  • [45] 2-Local Lie derivations on semi-finite factor von Neumann algebras
    Liu, Lei
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (09): : 1679 - 1686
  • [46] LIE-TRIPLE HOMOMORPHISMS INTO VON NEUMANN ALGEBRAS
    MIERS, CR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 58 (JUL) : 169 - 172
  • [47] Nonlinear bi-skew Lie-type derivations on factor von Neumann algebras
    Ashraf, Mohammad
    Akhter, Md Shamim
    Ansari, Mohammad Afajal
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) : 4766 - 4780
  • [48] Nonlinear skew Lie triple centralizers (derivations) on *-algebras
    Li, Changjing
    Li, Xiaoyi
    Wang, Jingxuan
    FILOMAT, 2024, 38 (18) : 6413 - 6421
  • [49] The strong degree of von Neumann algebras and the structure of Lie and Jordan derivations
    Alaminos, J
    Bresar, M
    Villena, AR
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 : 441 - 463
  • [50] THE STRUCTURE OF 2-LOCAL LIE DERIVATIONS ON VON NEUMANN ALGEBRAS
    Yang, Bing
    Fang, Xiaochun
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (02): : 242 - 251