The Second Nonlinear Mixed Lie Triple Derivations on Finite Von Neumann Algebras

被引:0
|
作者
Xingpeng Zhao
Xiaochun Fang
机构
[1] Tongji University,School of mathematical sciences
关键词
The second mixed Lie triple derivation; Local and 2-local; Von Neumann algebra; 16W25; 46L57; 47B49;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} be a finite von Neumann algebra with no central summands of type I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}_{1}$$\end{document}. Suppose that L:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L: {\mathcal {M}}\rightarrow {\mathcal {M}}$$\end{document} is the second nonlinear mixed Lie triple derivation. Then L is an additive ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation. We also show that each local and 2-local second Lie triple derivation on finite von Neumann algebras with no central summands of type I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}_{1}$$\end{document} is a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation. Besides, each local and 2-local second Lie triple derivation on factor von Neumann algebras M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} with dimM>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}>1$$\end{document} is also a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation.
引用
收藏
页码:237 / 254
页数:17
相关论文
共 50 条
  • [31] Non-global Nonlinear Lie Triple Derivable Maps on Finite von Neumann Algebras
    Zhao, Xingpeng
    Hao, Haixia
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (SUPPL 1) : 307 - 322
  • [32] The Second Nonlinear Mixed Jordan Triple Derivable Mapping on Factor von Neumann Algebras
    Pang, Yongfeng
    Zhang, Danli
    Ma, Dong
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 951 - 962
  • [33] The Second Nonlinear Mixed Jordan Triple Derivable Mapping on Factor von Neumann Algebras
    Yongfeng Pang
    Danli Zhang
    Dong Ma
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 951 - 962
  • [34] Bilocal Lie derivations on factor von Neumann algebras
    Ning, Tong
    Zhang, Jianhua
    Kong, Liang
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (08): : 1468 - 1483
  • [35] Local Lie derivations of factor von Neumann algebras
    Liu, Dan
    Zhang, Jianhua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 208 - 218
  • [36] Characterizations of Lie derivations of factor von Neumann algebras
    Ji, Peisheng
    Qi, Weiqing
    Sun, Xiaolu
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (03): : 417 - 428
  • [37] Characterizations of local Lie derivations on von Neumann algebras
    An, Guangyu
    Zhang, Xueli
    He, Jun
    Qian, Wenhua
    AIMS MATHEMATICS, 2022, 7 (05): : 7519 - 7527
  • [38] The nonlinear mixed bi-skew Lie triple derivations on ∗-algebras
    Wang, Jingxuan
    Li, Changjing
    Liang, Yueliang
    Chen, Lin
    FILOMAT, 2023, 37 (29) : 9981 - 9989
  • [39] ON LIE TRIPLE CENTRALIZERS OF VON NEUMANN ALGEBRAS
    Fadaee, Behrooz
    Ghahramani, Hoger
    OPERATORS AND MATRICES, 2024, 18 (03): : 559 - 570
  • [40] Nonlinear Lie triple derivations of triangular algebras
    Ji, Peisheng
    Liu, Rongrong
    Zhao, Yingzi
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (10): : 1155 - 1164