Gradient Adaptive Algorithms for Contrast-Based Blind Deconvolution

被引:0
|
作者
Scott C. Douglas
S.-Y. Kung
机构
[1] Southern Methodist University,Department of Electrical Engineering
[2] Princeton University,Department of Electrical Engineering
关键词
Independent Component Analysis; Independent Component Analysis; Blind Source Separation; IEEE Workshop; Blind Deconvolution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents extensions of stochastic gradient independent component analysis (ICA) methods to the blind deconvolution task. Of particular importance in these extensions are the constraints placed on the deconvolution system transfer function. While unit-norm constrained ICA approaches can be directly applied to the prewhitened blind deconvolution task, an allpass filter constraint within the optimization procedure is more appropriate. We show how such constraints can be approximately imposed within gradient adaptive finite-impulse-response (FIR) filter implementations by proper extensions of gradient techniques within the Stiefel manifold of orthonormal matrices. Both on-line time-domain and block-based frequency-domain algorithms are described. Simulations verify the superior performance behaviors provided by our allpass-constrained algorithms over standard unit-norm-constrained ICA algorithms in blind deconvolution tasks.
引用
收藏
页码:47 / 60
页数:13
相关论文
共 50 条
  • [41] Blind Image Deconvolution by Automatic Gradient Activation
    Gong, Dong
    Tan, Mingkui
    Zhang, Yanning
    van den Hengel, Anton
    Shi, Qinfeng
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1827 - 1836
  • [42] Influence of different contributions of scatter and attenuation on the threshold values in contrast-based algorithms for volume segmentation
    Matheoud, Roberta
    Della Monica, Patrizia
    Secco, Chiara
    Loi, Gianfranco
    Krengli, Marco
    Inglese, Eugenio
    Brambilla, Marco
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2011, 27 (01): : 44 - 51
  • [43] Natural Gradient Approach to Multichannel Blind Deconvolution
    Zhang Liqing
    [J]. Journal of Systems Engineering and Electronics, 2000, (01) : 22 - 31
  • [44] Multichannel Blind Deconvolution Using the Conjugate Gradient
    Bin Xia
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 3, PROCEEDINGS, 2009, 5553 : 612 - 620
  • [45] A contrast-based approach to the identification of texture faults
    De Natale, FGB
    Granelli, F
    Vernazza, G
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2002, 16 (02) : 193 - 214
  • [46] ADAPTIVE ITERATIVE ALGORITHMS FOR SPIKY DECONVOLUTION
    FIGUEIRASVIDAL, AR
    DOCAMPOAMOEDO, D
    CASARCORREDERA, JR
    ARTESRODRIGUEZ, A
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (08): : 1462 - 1466
  • [47] Blind Deconvolution Meets Blind Demixing: Algorithms and Performance Bounds
    Ling, Shuyang
    Strohmer, Thomas
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4497 - 4520
  • [48] GREATEST COMMON DIVISOR ALGORITHMS AND BLIND DECONVOLUTION
    MOUYAN, Z
    UNBEHAUEN, R
    [J]. AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1995, 49 (03): : 160 - 169
  • [49] Blind deconvolution by iterative Fourier transform algorithms
    Takahashi, T
    Takajo, H
    Maki, H
    Dainty, JC
    [J]. 17TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR SCIENCE AND NEW TECHNOLOGY, PTS 1 AND 2, 1996, 2778 : 517 - 518
  • [50] Novel fiber optic contrast-based sensor
    Szustakowski, M
    Palka, N
    [J]. INDUSTRIAL AND HIGHWAY SENSORS TECHNOLOGY, 2003, 5272 : 255 - 262